Your browser doesn't support javascript.
loading
Proton Collective Quantum Tunneling Induces Anomalous Thermal Conductivity of Ice under Pressure.
Wang, Yufeng; Luo, Ripeng; Chen, Jian; Zhou, Xuefeng; Wang, Shanmin; Wu, Junqiao; Kang, Feiyu; Yu, Kuang; Sun, Bo.
Afiliación
  • Wang Y; Tsinghua Shenzhen International Graduate School, <a href="https://ror.org/03cve4549">Tsinghua University</a>, Shenzhen 518055, China.
  • Luo R; <a href="https://ror.org/02hhwwz98">Tsinghua-Berkeley Shenzhen Institute</a>, <a href="https://ror.org/03cve4549">Tsinghua University</a>, Shenzhen 518055, China.
  • Chen J; <a href="https://ror.org/02hhwwz98">Tsinghua-Berkeley Shenzhen Institute</a>, <a href="https://ror.org/03cve4549">Tsinghua University</a>, Shenzhen 518055, China.
  • Zhou X; Department of Physics and Academy for Advanced Interdisciplinary Studies, <a href="https://ror.org/049tv2d57">Southern University of Science and Technology</a>, Shenzhen 518055, China.
  • Wang S; Department of Physics and Academy for Advanced Interdisciplinary Studies, <a href="https://ror.org/049tv2d57">Southern University of Science and Technology</a>, Shenzhen 518055, China.
  • Wu J; Department of Physics and Academy for Advanced Interdisciplinary Studies, <a href="https://ror.org/049tv2d57">Southern University of Science and Technology</a>, Shenzhen 518055, China.
  • Kang F; Department of Materials Science and Engineering, <a href="https://ror.org/01an7q238">University of California</a>, Berkeley, California 94720, USA.
  • Yu K; Materials Sciences Division, <a href="https://ror.org/02jbv0t02">Lawrence Berkeley National Laboratory</a>, Berkeley, California 94720, USA.
  • Sun B; Tsinghua Shenzhen International Graduate School, <a href="https://ror.org/03cve4549">Tsinghua University</a>, Shenzhen 518055, China.
Phys Rev Lett ; 132(26): 264101, 2024 Jun 28.
Article en En | MEDLINE | ID: mdl-38996295
ABSTRACT
Proton tunneling is believed to be nonlocal in ice, but its range has been shown to be limited to only a few molecules. Here, we measured the thermal conductivity of ice under pressure up to 50 GPa and found it increases with pressure until 20 GPa but decreases at higher pressures. We attribute this nonmonotonic thermal conductivity to the collective tunneling of protons at high pressures, supported by large-scale quantum molecular dynamics simulations. The collective tunneling loops span several picoseconds in time and are as large as nanometers in space, which match the phonon periods and wavelengths, leading to strong phonon scattering at high pressures. Our results show direct evidence of global quantum motion existing in high-pressure ice and provide a new perspective to understanding the coupling between phonon propagation and atomic tunneling.

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2024 Tipo del documento: Article