Your browser doesn't support javascript.
loading
Understanding mechanisms of generalization following locomotor adaptation.
Rossi, Cristina; Roemmich, Ryan T; Bastian, Amy J.
Afiliación
  • Rossi C; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
  • Roemmich RT; Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, 21205, USA.
  • Bastian AJ; Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, 21205, USA.
NPJ Sci Learn ; 9(1): 48, 2024 Jul 23.
Article en En | MEDLINE | ID: mdl-39043679
ABSTRACT
Our nervous system has the remarkable ability to adapt our gait to accommodate changes in our body or surroundings. However, our adapted walking patterns often generalize only partially (or not at all) between different contexts. Here, we sought to understand how the nervous system generalizes adapted gait patterns from one context to another. Through a series of split-belt treadmill walking experiments, we evaluated different mechanistic hypotheses to explain the partial generalization of adapted gait patterns from split-belt treadmill to overground walking. In support of the credit assignment hypothesis, our experiments revealed the central finding that adaptation involves recalibration of two distinct forward models. Recalibration of the first model generalizes to overground walking, suggesting that the model represents the general movement dynamics of our body. On the other hand, recalibration of the second model does not generalize to overground walking, suggesting the model represents dynamics specific to treadmill walking. These findings reveal that there is a predefined portion of forward model recalibration that generalizes across context, leading to overall partial generalization of walking adaptation.

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: NPJ Sci Learn Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: NPJ Sci Learn Año: 2024 Tipo del documento: Article