Your browser doesn't support javascript.
loading
The C2H2 Transcription Factor Con7 Regulates Vegetative Growth, Cell Wall Integrity, Oxidative Stress, Asexual Sporulation, Appressorium and Hyphopodium Formation, and Pathogenicity in Colletotrichum graminicola and Colletotrichum siamense.
Zhou, Shuangzhen; Liu, Shayu; Guo, Chenchen; Wei, Hanwen; He, Zhihui; Liu, Zhiqiang; Li, Xiaoyu.
Afiliación
  • Zhou S; School of Life and Health Sciences, Hainan University, Haikou 570228, China.
  • Liu S; School of Life and Health Sciences, Hainan University, Haikou 570228, China.
  • Guo C; School of Life and Health Sciences, Hainan University, Haikou 570228, China.
  • Wei H; School of Life and Health Sciences, Hainan University, Haikou 570228, China.
  • He Z; School of Life and Health Sciences, Hainan University, Haikou 570228, China.
  • Liu Z; School of Life and Health Sciences, Hainan University, Haikou 570228, China.
  • Li X; School of Life and Health Sciences, Hainan University, Haikou 570228, China.
J Fungi (Basel) ; 10(7)2024 Jul 17.
Article en En | MEDLINE | ID: mdl-39057380
ABSTRACT
The Colletotrichum genus is listed as one of the top 10 important plant pathogens, causing significant economic losses worldwide. The C2H2 zinc finger protein serves as a crucial transcription factor regulating growth and development in fungi. In this study, we identified two C2H2 transcription factors, CgrCon7 and CsCon7, in Colletotrichum graminicola and Colletotrichum siamense, as the orthologs of Con7p in Magnaporthe oryzae. Both CgrCon7 and CsCon7 have a typical C2H2 zinc finger domain and exhibit visible nuclear localization. Disrupting Cgrcon7 or Cscon7 led to a decreased growth rate, changes in cell wall integrity, and low tolerance to H2O2. Moreover, the deletion of Cgrcon7 or Cscon7 dramatically decreased conidial production, and their knockout mutants also lost the ability to produce appressoria and hyphopodia. Pathogenicity assays displayed that deleting Cgrcon7 or Cscon7 resulted in a complete loss of virulence. Transcriptome analysis showed that CgrCon7 and CsCon7 were involved in regulating many genes related to ROS detoxification, chitin synthesis, and cell wall degradation, etc. In conclusion, CgrCon7 and CsCon7 act as master transcription factors coordinating vegetative growth, oxidative stress response, cell wall integrity, asexual sporulation, appressorium formation, and pathogenicity in C. graminicola and C. siamense.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: J Fungi (Basel) Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: J Fungi (Basel) Año: 2024 Tipo del documento: Article