Your browser doesn't support javascript.
loading
A Model for Mechanical Stress Limited Bacterial Growth and Resporulation in Confinement.
de Souza Heidel, Beatriz L; Benson, Joey; O'Keane, Sophie; Dodge, Anthony G; Wackett, Lawrence P; Aksan, Alptekin.
Afiliación
  • de Souza Heidel BL; Bioencapsulation Laboratory, Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States.
  • Benson J; Bioencapsulation Laboratory, Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States.
  • O'Keane S; Bioencapsulation Laboratory, Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States.
  • Dodge AG; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota 55108, United States.
  • Wackett LP; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota 55108, United States.
  • Aksan A; The BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108, United States.
ACS Appl Mater Interfaces ; 16(32): 41800-41809, 2024 Aug 14.
Article en En | MEDLINE | ID: mdl-39088721
ABSTRACT
In this study, we propose a self-limiting growth model forBacillus subtilisspores confined within porous polyacrylamide (PA) hydrogels. We observed thatB. subtilisspores germinate into vegetative cells within the hydrogel matrix, forming spherical colonies. These colonies expand until the mechanical stress they exert on their environment surpasses the yield stress of the hydrogel, leading to formation of a nonpermeable layer that halts nutrient diffusion and forces the bacteria to resporulate. These novel observations suggest a model to explain why bacterial growth in confined environments and material interfaces may be limited, providing insight for natural phenomena and biotechnological applications involving bacterial encapsulation.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Estrés Mecánico / Resinas Acrílicas / Hidrogeles Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Estrés Mecánico / Resinas Acrílicas / Hidrogeles Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article