Your browser doesn't support javascript.
loading
Machine Learning-Enabled Tomographic Imaging of Chemical Short-Range Atomic Ordering.
Li, Yue; Colnaghi, Timoteo; Gong, Yilun; Zhang, Huaide; Yu, Yuan; Wei, Ye; Gan, Bin; Song, Min; Marek, Andreas; Rampp, Markus; Zhang, Siyuan; Pei, Zongrui; Wuttig, Matthias; Ghosh, Sheuly; Körmann, Fritz; Neugebauer, Jörg; Wang, Zhangwei; Gault, Baptiste.
Afiliación
  • Li Y; Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237, Düsseldorf, Germany.
  • Colnaghi T; Max Planck Computing and Data Facility, Gießenbachstraße 2, 85748, Garching, Germany.
  • Gong Y; Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237, Düsseldorf, Germany.
  • Zhang H; Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK.
  • Yu Y; Institute of Physics (IA), RWTH Aachen University, 52056, Aachen, Germany.
  • Wei Y; Institute of Physics (IA), RWTH Aachen University, 52056, Aachen, Germany.
  • Gan B; Ecole Polytechnique Fédérale de Lausanne, School of Engineering, Rte Cantonale, Lausanne, 1015, Switzerland.
  • Song M; Suzhou Laboratory, No.388, Ruoshui Street, SIP, Jiangsu, 215123, China.
  • Marek A; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China.
  • Rampp M; Max Planck Computing and Data Facility, Gießenbachstraße 2, 85748, Garching, Germany.
  • Zhang S; Max Planck Computing and Data Facility, Gießenbachstraße 2, 85748, Garching, Germany.
  • Pei Z; Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237, Düsseldorf, Germany.
  • Wuttig M; New York University, New York, NY, 10012, USA.
  • Ghosh S; Institute of Physics (IA), RWTH Aachen University, 52056, Aachen, Germany.
  • Körmann F; Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237, Düsseldorf, Germany.
  • Neugebauer J; Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237, Düsseldorf, Germany.
  • Wang Z; Materials Informatics, BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, 12489, Berlin, Germany.
  • Gault B; Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237, Düsseldorf, Germany.
Adv Mater ; : e2407564, 2024 Aug 12.
Article en En | MEDLINE | ID: mdl-39135414
ABSTRACT
In solids, chemical short-range order (CSRO) refers to the self-organization of atoms of certain species occupying specific crystal sites. CSRO is increasingly being envisaged as a lever to tailor the mechanical and functional properties of materials. Yet quantitative relationships between properties and the morphology, number density, and atomic configurations of CSRO domains remain elusive. Herein, it is showcased how machine learning-enhanced atom probe tomography (APT) can mine the near-atomically resolved APT data and jointly exploit the technique's high elemental sensitivity to provide a 3D quantitative analysis of CSRO in a CoCrNi medium-entropy alloy. Multiple CSRO configurations are revealed, with their formation supported by state-of-the-art Monte-Carlo simulations. Quantitative analysis of these CSROs allows establishing relationships between processing parameters and physical properties. The unambiguous characterization of CSRO will help refine strategies for designing advanced materials by manipulating atomic-scale architectures.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article