Your browser doesn't support javascript.
loading
Contrasting fertilization and phenological stages shape microbial-mediated phosphorus cycling in a maize agroecosystem.
Barquero, M B; García-Díaz, C; Dobbler, P T; Jehmlich, N; Moreno, J L; López-Mondéjar, R; Bastida, F.
Afiliación
  • Barquero MB; Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas, CEBAS-CSIC, 30100 Murcia, Spain.
  • García-Díaz C; Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas, CEBAS-CSIC, 30100 Murcia, Spain.
  • Dobbler PT; Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czechia.
  • Jehmlich N; Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Molecular Toxicology, Leipzig, Germany.
  • Moreno JL; Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas, CEBAS-CSIC, 30100 Murcia, Spain.
  • López-Mondéjar R; Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas, CEBAS-CSIC, 30100 Murcia, Spain.
  • Bastida F; Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas, CEBAS-CSIC, 30100 Murcia, Spain. Electronic address: fbastida@cebas.csic.es.
Sci Total Environ ; 951: 175571, 2024 Aug 15.
Article en En | MEDLINE | ID: mdl-39153624
ABSTRACT
Phosphorus (P) is essential for plants but often limited in soils, with microbes playing a key role in its cycling. P deficiency in crops can be mitigated by applying by-products like sludge and struvite to enhance yield and sustainability. Here, we evaluated the contribution of four different types of fertilizers i) conventional NPK; ii) sludge; iii) struvite; and iv) struvite+sludge in a semiarid maize plantation to the availability of P and the responses of the soil microbiome. We investigated the effects of these treatments on the relative abundance of bacterial and archaeal genes and proteins related to organic P mineralization, inorganic P solubilization, and the P starvation response regulation through a multi-omic approach. Moreover, we explored the impact of maize phenology by collecting samples at germination and flowering stages. Our findings suggest that the phenological stage has a notable impact on the abundance of P cycle genes within bacterial and archaeal communities, particularly regarding the solubilization of inorganic P. Furthermore, significant variations were observed in the relative abundance of genes associated with different P cycles in response to various fertilizer treatments. Sludge and struvite application improved P availability, which was related to an increase in the relative abundance of Sphingomonas (Proteobacteria) and Luteitalea (Acidobacteria) respectively, and genes related to inorganic P solubilization. Furthermore, we observed a substantial taxonomic clustering of functional processes associated with the P cycle. Among the dominant bacterial populations containing P-related genes, those microbes possessing genes linked to the solubilization of inorganic P typically did not harbor genes associated with the mineralization of organic P. This phenomenon was particularly evident among members of Actinobacteria. Overall, we reveal important shifts in bacterial and archaeal communities and associated molecular processes, stressing the intricate interplay between fertilization, phenology, and P cycling in agroecosystems.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article