Your browser doesn't support javascript.
loading
Enhanced anti-angiogenic effects of aprepitant-loaded nanoparticles in human umbilical vein endothelial cells.
Kaya-Tilki, Elif; Öztürk, Ahmet Alper; Engür-Öztürk, Selin; Dikmen, Miris.
Afiliación
  • Kaya-Tilki E; Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey. elif_kaya@anadolu.edu.tr.
  • Öztürk AA; Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey.
  • Engür-Öztürk S; Department of Pharmacy Services, Tavas Vocational School of Health Services, Pamukkale University, Denizli, Turkey.
  • Dikmen M; Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey.
Sci Rep ; 14(1): 19837, 2024 08 27.
Article en En | MEDLINE | ID: mdl-39191829
ABSTRACT
Recent advancements in cancer therapy have led to the development of novel nanoparticle-based drug delivery systems aimed at enhancing the efficacy of chemotherapeutic agents. This study focuses on evaluating aprepitant-loaded PLGA and Eudragit RS 100 nanoparticles for their potential antiangiogenic effects. Characterization studies revealed that aprepitant-loaded nanoparticles exhibited particle sizes ranging from 208.50 to 238.67 nm, with monodisperse distributions (PDI < 0.7) and stable zeta potentials (between - 5.0 and - 15.0 mV). Encapsulation efficiencies exceeding 99% were achieved, highlighting the efficacy of PLGA and Eudragit RS 100 as carriers for aprepitant. Cellular uptake studies demonstrated enhanced internalization of aprepitant-loaded nanoparticles by HUVEC cells compared to free aprepitant, as confirmed by fluorescence microscopy. Furthermore, cytotoxicity assays revealed significant dose-dependent effects of aprepitant-loaded nanoparticles on HUVEC cell viability, with IC50 values at 24 h of 11.9 µg/mL for Eudragit RS 100 and 94.3 µg/mL for PLGA formulations. Importantly, these nanoparticles effectively inhibited HUVEC cell migration and invasion induced by M2c supernatant, as evidenced by real-time cell analysis and gene expression studies. Moreover, aprepitant-loaded nanoparticles downregulated VEGFA and VEGFB gene expressions and reduced VEGFR-2 protein levels in HUVEC cells, highlighting their potential as antiangiogenic agents. Overall, this research underscores the promise of nanoparticle-based aprepitant formulations in targeted cancer therapy, offering enhanced therapeutic outcomes through improved drug delivery and efficacy against angiogenesis.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Supervivencia Celular / Inhibidores de la Angiogénesis / Nanopartículas / Células Endoteliales de la Vena Umbilical Humana / Aprepitant Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Supervivencia Celular / Inhibidores de la Angiogénesis / Nanopartículas / Células Endoteliales de la Vena Umbilical Humana / Aprepitant Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article