Your browser doesn't support javascript.
loading
Higher Flower Hydraulic Safety, Drought Tolerance and Structural Resource Allocation Provide Drought Adaptation to Low Mean Annual Precipitation in Caragana Species.
Du, Ya-Xian; Qi, Shi-Hua; Tian, Xue-Qian; Yao, Guang-Qian; Zhang, Long; Li, Feng-Ping; Jiang, Hui; Zhang, Xia-Yi; Fang, Xiang-Wen.
Afiliación
  • Du YX; State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.
  • Qi SH; State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.
  • Tian XQ; State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.
  • Yao GQ; State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.
  • Zhang L; State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.
  • Li FP; State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.
  • Jiang H; State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.
  • Zhang XY; State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.
  • Fang XW; State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.
Plant Cell Environ ; 2024 Sep 16.
Article en En | MEDLINE | ID: mdl-39279510
ABSTRACT
Determining the differences in flower hydraulic traits and structural resource allocation among closely related species adapted to low mean annual precipitation (MAP) can provide insight into plant adaptation to arid environments. Here, we measured the maximum flower hydraulic conductance (Kmax-flower), water potential at induction 50% loss of Kmax-flower (P50-flower), flower pressure-volume parameters, dry mass of individual flowers and structural components (vexillum, wings, keels, stamens and sepals) of six Caragana species growing in regions ranging from 110 to 1400 mm MAP. Compared with species from high-MAP environments, those from low-MAP environments presented lower Kmax-flower, more negative P50-flower, osmotic potential at full turgor (πo) and turgor loss points (πtlp), and a greater bulk modulus of elasticity (ε). Consequently, a negative correlation between Kmax-flower (hydraulic efficiency) and P50-flower (hydraulic safety) was observed across Caragana species. Furthermore, the dry masses of individual flowers and structural components (vexillum, wings, keels, stamens and sepals) were greater in the species from the low-MAP environment than in those from the high-MAP environment. These findings suggest that greater flower hydraulic safety and drought tolerance combined with greater structural resource allocation promote drought adaptation in Caragana species to low-MAP environments.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Plant Cell Environ Asunto de la revista: BOTANICA Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Plant Cell Environ Asunto de la revista: BOTANICA Año: 2024 Tipo del documento: Article