Your browser doesn't support javascript.
loading
A Peptide-Drug Conjugate-Based Nanoplatform for Immunometabolic Activation and In Situ Nerve Regeneration in Advanced-Stage Alzheimer's Disease.
Liu, Peixin; Zhang, Tongyu; Wu, Yuxing; Chen, Qinjun; Sun, Tao; Jiang, Chen.
Afiliación
  • Liu P; Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201203, China.
  • Zhang T; Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201203, China.
  • Wu Y; Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201203, China.
  • Chen Q; Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201203, China.
  • Sun T; Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201203, China.
  • Jiang C; Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201203, China.
Adv Mater ; : e2408729, 2024 Sep 26.
Article en En | MEDLINE | ID: mdl-39324288
ABSTRACT
The formidable protection of physiological barriers and unclear pathogenic mechanisms impede drug development for Alzheimer's disease (AD). As defenders of the central nervous system, immune-metabolism function, and stemness of glial cells remain dormant during degeneration, representing a significant challenge for simultaneously targeting and modulating. Here, a modular nanoplatform is presented composed of peptide-drug conjugates and an inflammation-responsive core. The nanoplatform is transported through the blood-brain barrier via transcytosis and disassembles in the oxidative stress microenvironment upon intravenous administration. The released drug-conjugated modules can specifically target and deliver hydroxychloroquine (HCQ) and all-trans retinoic acid (ATRA) to microglia and astrocytes, respectively. The immune function of chronic tolerant microglia is activated by metabolic modulation, and reactive astrocytes trans-differentiate into functional neurons. In a transgenic mouse model, nanoplatform reduces levels of toxic proteins and inflammation while increasing neuronal density. This results in the amelioration of learning and memory decline. The modular nanoplatform provides design principles for multi-cellular targeting and combination nano-therapy for inflammation-related diseases.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article