Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Langmuir ; 38(9): 2763-2776, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35212551

RESUMEN

Sporopollenin shells isolated from natural pollen grains have received attention in translational and applied research in diverse fields of drug delivery, vaccine delivery, and wastewater remediation. However, little is known about the sporopollenin shell's potential as an adsorbent. Herein, we have isolated sporopollenin shells from four structurally diverse pollen species, black walnut, marsh elder, mugwort, and silver birch, to study protein adsorption onto sporopollenin shells. We investigated three major interfacial properties, surface area, surface functional groups, and surface charge, to elucidate the mechanism of protein adsorption onto sporopollenin shells. We showed that sporopollenin shells have a moderate specific surface area (<12 m2/g). Phosphoric acid and potassium hydroxide treatments that were used to isolate sporopollenin shells from natural pollen grains also result in the functionalization of sporopollenin shell surfaces with ionizable groups of carboxylic acid and carboxylate salt. As a result, sporopollenin shells exhibit a negative ζ potential in the range of -75 to -82 mV at pH 10 when dispersed in water. The ζ potentials of sporopollenin shells remain negative in the pH range of 2.5-11, with the absolute value of ζ potential showing a decrease with the decrease in pH. The negative surface charge promotes the adsorption of protein onto the sporopollenin shell via electrostatic interaction. Despite having a moderate surface area, sporopollenin shells adsorb a significant amount of lysozyme (145-340 µg lysozyme per mg of sporopollenin shells). Lysozyme adsorption onto sporopollenin shells alters the surface, and the surface charge becomes positive at acidic pH. Overall, this study demonstrates the potential of sporopollenin shells to adsorb proteins, highlights the critical role of sporopollenin shell's interfacial properties in protein adsorption, and identifies the mechanism of protein adsorption on sporopollenin shells.


Asunto(s)
Muramidasa , Adsorción , Biopolímeros , Carotenoides , Concentración de Iones de Hidrógeno , Propiedades de Superficie
2.
Environ Res ; 215(Pt 1): 114242, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36067842

RESUMEN

Over the past few years, synthetic dye-contaminated wastewater has attracted considerable global attention due to the low biodegradability and the ability of organic dyes to persist and remain toxic, causing numerous health and environmental concerns. As a result of the recalcitrant nature of those complex organic dyes, the remediation of wastewater using conventional wastewater treatment techniques is becoming increasingly challenging. In recent years, advanced oxidation processes (AOPs) have emerged as a potential alternative to treat organic dyestuffs discharged from industries. The most widely employed AOPs include photocatalysis, ozonation, Fenton oxidation, electrochemical oxidation, catalytic heterogeneous oxidation, and ultrasound irradiation. These processes involve the generation of highly reactive radicals to oxidize organic dyes into innocuous minerals. However, many conventional AOPs suffer from several setbacks, including the high cost, high consumption of reagents and substrates, self-agglomeration of catalysts, limited reusability, and the requirement of light, ultrasound, or electricity. Therefore, there has been significant interest in improving the performance of conventional AOPs using biopolymers and heterogeneous catalysts such as metal oxide nanoparticles (MONPs). Biopolymers have been widely considered in developing green, sustainable, eco-friendly, and low-cost AOP-based dye removal technologies. They inherit intriguing properties like biodegradability, renewability, nontoxicity, relative abundance, and sorption. In addition, the immobilization of catalysts on biopolymer supports has been proven to possess excellent catalytic activity and turnover numbers. The current review provides comprehensive coverage of different AOPs and how efficiently biopolymers, including cellulose, chitin, chitosan, alginate, gelatin, guar gum, keratin, silk fibroin, zein, albumin, lignin, and starch, have been integrated with heterogeneous AOPs in dye removal applications. This review also discusses the general degradation mechanisms of AOPs, applications of biopolymers in AOPs and the roles of biopolymers in AOPs-based dye removal processes. Furthermore, key challenges and future perspectives of biopolymer-based AOPs have also been highlighted.


Asunto(s)
Quitosano , Fibroínas , Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Zeína , Albúminas , Alginatos , Colorantes , Gelatina , Queratinas , Lignina , Oxidación-Reducción , Óxidos , Almidón , Aguas Residuales , Contaminantes Químicos del Agua/química
3.
Molecules ; 27(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35807226

RESUMEN

The isolation of chitin utilizing ionic liquid 1-ethyl-3-methylimidazolium acetate has been determined to result in polymer contaminated with proteins. For the first time, the proteins in chitin extracted with ionic liquid have been quantified; the protein content was found to vary from 1.3 to 1.9% of the total weight. These proteins were identified and include allergenic proteins such as tropomyosin. In order to avoid 'traditional' hydroxide-based deproteinization of chitin, which could reduce the molecular weight of the final product, alternative deproteinization strategies were attempted. Testing of the previously reported deproteinization method using aqueous K3PO4 resulted in protein reduction by factors varying from 2 to 10, but resulted in significant phosphate salt contamination of the final product. Contrarily, the incorporation of GRAS (Generally Recognized as Safe) compound Polysorbate 80 into the polymer washing step provided the polymer of comparable purity with no contaminants. This study presents new options for the deproteinization of chitin that can replace traditional approaches with methods that are environmentally friendly and can produce high purity polymer.


Asunto(s)
Quitina , Líquidos Iónicos , Peso Molecular , Polímeros , Proteínas
4.
Molecules ; 27(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36296604

RESUMEN

The utilization of cellulose to its full potential is constrained by its recalcitrance to dissolution resulting from the rigidity of polymeric chains, high crystallinity, high molecular weight, and extensive intra- and intermolecular hydrogen bonding network. Therefore, pretreatment of cellulose is usually considered as a step that can help facilitate its dissolution. We investigated the use of microwave oxygen plasma as a pre-treatment strategy to enhance the dissolution of cotton fibers in aqueous NaOH/Urea solution, which is considered to be a greener solvent system compared to others. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, and Powder X-ray Diffraction analyses revealed that plasma pretreatment of cotton cellulose leads to physicochemical changes of cotton fibers. Pretreatment of cotton cellulose with oxygen plasma for 20 and 40 min resulted in the reduction of the molecular weight of cellulose by 36% and 60% and crystallinity by 16% and 25%, respectively. This reduction in molecular weight and crystallinity led to a 34% and 68% increase in the dissolution of 1% (w/v) cotton cellulose in NaOH/Urea solvent system. Thus, treating cotton cellulose with microwave oxygen plasma alters its physicochemical properties and enhanced its dissolution.


Asunto(s)
Celulosa , Microondas , Celulosa/química , Hidróxido de Sodio/química , Solubilidad , Polvos , Fibra de Algodón , Solventes , Urea/química , Oxígeno
5.
Int J Biol Macromol ; 266(Pt 2): 131287, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565367

RESUMEN

In the quest to enhance the performance of natural fiber-reinforced polymer composites, achieving optimal dispersion of fiber materials within a polymeric matrix has been identified as a key strategy. Traditional approaches, such as the surface modification of natural fibers, often necessitate the use of additional synthetic chemical processes, presenting a significant challenge. In this work, taking poly (acrylonitrile-styrene-acrylic) (ASA) and bamboo fiber (BF) as a model system, we attempt to use the elastomer-chlorinated polyethylene (CPE) as a compatibilizer to tailor the mechanical properties of ASA/CPE/BF ternary composites. It was found that increasing CPE content contributed to more remarkable reinforcing efficiency, where composite with 15 phr CPE exhibited a nearly four-fold increase in reinforcing efficiency of tensile strength (20 %) compared with that of composite system without CPE (4.1 %). Such improvement was ascribed to the compatibilizing effect exerted by CPE, which prevented the aggregation of BF within polymeric matrix. Surface properties suggested the stronger interface between CPE and BF compared to that between ASA and BF and thereby contributed to the compabilizing effect. Since no chemical process was involved, it is suggested that the introduction of elastomer to be a universal, green and sustainable approach to achieve the reinforcement.


Asunto(s)
Resinas Acrílicas , Polietileno , Polietileno/química , Resinas Acrílicas/química , Resistencia a la Tracción , Acrilonitrilo/química
6.
Sci Rep ; 14(1): 6921, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519540

RESUMEN

In this study, the biodegradability of cellulose films was evaluated in controlled-moisture soil environments. The films were prepared from low-quality cotton fibers through dissolution in DMAc/LiCl, casting, regeneration, glycerol plasticization, and hot-pressing. Two soil burial degradation experiments were conducted in August 2020 (11th August to 13th October) and March 2021 (24th March to 24th July) under controlled moisture conditions to assess the biodegradation behavior of cellulose films. The films were retrieved from soil beds at seven-day intervals, and morphological and physicochemical changes in the films were investigated. The results indicated that the cellulose films exhibited gradual changes starting on Day 7 and major changes after Day 35. Stereomicroscopy images showed the growth and development of fungal mycelia on the surface of the films, and FTIR spectroscopy confirmed the presence of biomolecules originating from microorganisms. The tensile strength and elongation of cellulose films were significantly reduced by 64% and 96% in the first experiment and by 40% and 94% in the second experiment, respectively, during the degradation period. Degradation also significantly impacted the thermal stability (14% and 16.5% reduction, respectively, in the first and second studies) of the films. The cellulose-based films completely degraded within 63 days in late summer and 112 days in spring. This study demonstrates that, unlike synthetic plastics, films prepared from low-quality cotton fibers can easily degrade in the natural environment.


Asunto(s)
Celulosa , Suelo , Celulosa/química , Resistencia a la Tracción , Plásticos , Ambiente Controlado
7.
Carbohydr Polym ; 289: 119408, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35483831

RESUMEN

The study evaluated the effect of cryogrinding, a relatively new, cost-effective, and sustainable mechanical treatment method, on physicochemical properties of two different micronaire (3.6- and 5.3-) cotton fiber cellulose. Native (type I), mercerized (type II), and acidulated cellulose were subjected to cryogrinding for 48 and 96 min, and their physicochemical properties were investigated. The results demonstrated that cryogrinding resulted in partial amorphization of native and mercerized celluloses, particle size decrease, and a slight reduction of T50%. Importantly, degree of polymerization (DP) of native cellulose reduced significantly: more than two-fold after 12 cycles and more than three-fold after 24 cycles of cryogrinding. No difference in properties was found between 3.6- and 5.3-micronaire cellulose. Advantageous impacts of cryogrinding found in this work will help signify the potential of this technique in cellulose processing and enable the identification of areas for future development.


Asunto(s)
Celulosa , Fibra de Algodón , Celulosa/química , Polimerizacion
8.
J Microbiol Methods ; 202: 106598, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36243231

RESUMEN

Selenium covalently bonded to cellulose can catalyze the formation of superoxide radicals. Candida albicans, colonizes epithelial surfaces and can be a fatal infection in immunocompromised people. In this study, we demonstrated the ability of organo-selenium, covalently attached to cotton textile dressings to kill C. albicans biofilms.


Asunto(s)
Candida albicans , Selenio , Humanos , Selenio/farmacología , Celulosa/farmacología , Polímeros , Antifúngicos/farmacología , Biopelículas , Vendajes
9.
Sci Rep ; 11(1): 3643, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33574461

RESUMEN

The use of plant-based biomaterials for tissue engineering has recently generated interest as plant decellularization produces biocompatible scaffolds which can be repopulated with human cells. The predominant approach for vegetal decellularization remains serial chemical processing. However, this technique is time-consuming and requires harsh compounds which damage the resulting scaffolds. The current study presents an alternative solution using supercritical carbon dioxide (scCO2). Protocols testing various solvents were assessed and results found that scCO2 in combination with 2% peracetic acid decellularized plant material in less than 4 h, while preserving plant microarchitecture and branching vascular network. The biophysical and biochemical cues of the scCO2 decellularized spinach leaf scaffolds were then compared to chemically generated scaffolds. Data showed that the scaffolds had a similar Young's modulus, suggesting identical stiffness, and revealed that they contained the same elements, yet displayed disparate biochemical signatures as assessed by Fourier-transform infrared spectroscopy (FTIR). Finally, human fibroblast cells seeded on the spinach leaf surface were attached and alive after 14 days, demonstrating the biocompatibility of the scCO2 decellularized scaffolds. Thus, scCO2 was found to be an efficient method for plant material decellularization, scaffold structure preservation and recellularization with human cells, while performed in less time (36 h) than the standard chemical approach (170 h).


Asunto(s)
Materiales Biocompatibles/química , Dióxido de Carbono/química , Células Vegetales/química , Andamios del Tejido/química , Matriz Extracelular/química , Humanos , Ingeniería de Tejidos
10.
Int J Biol Macromol ; 123: 1289-1296, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30342150

RESUMEN

This paper reports on the effect of improved porous characteristics of cellulose on its solubility in DMAc/LiCl. The use of freeze-drying (FD) treatment led to higher surface area and void fraction of volume for high-molecular-weight (HMW) cotton cellulose (DP~5000). Improvement in porous characteristics of cellulose did not change the chemical and crystalline structures of cellulose, as compared to hot-drying (HD) treatment. However, significant improvement in the dissolution of FD-HMW cellulose in DMAc/LiCl was observed under relatively low temperature (80 °C). The relationship between the solubility and the porous characteristics of cellulose was discussed using Stokes-Einstein Equation and effective diffusion coefficient equation. It was concluded that the increase in the diffusion coefficient of the solvent and the improvement in the porous characteristics of cellulose played key roles to enhance the diffusion rate of the solvent through the cellulose molecular network.


Asunto(s)
Celulosa/química , Solventes/química , Adsorción , Desecación , Congelación , Calor , Nitrógeno/química , Porosidad , Reología , Solubilidad , Soluciones , Difracción de Rayos X
11.
Carbohydr Polym ; 221: 63-72, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31227168

RESUMEN

During the past decade, ionic liquids (ILs) have attracted increasing attention as efficient, novel solvents for dissolving cellulose. In this study, 1-butyl-3-methylimdazolium methylphosphonate ([C4C1im][(OMe)(H)PO2]) was used in the dissolution of cotton cellulose and the role of 1-methylimidazole, 1-ethylimidazole, 1-propylimidazole, and 1-butylimidazole as co-solvents was investigated. The progress of the dissolution was monitored using polarized light microscopy (PLM) and the regenerated cellulose was characterized using scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The effect of 1-alkylimidazoles as co-solvents in cellulose dissolution was examined in terms of the basicity (hydrogen-bond acceptor capability), conductivity, viscosity, and ionicity of the IL and IL/co-solvent mixtures. These studies showed that the addition of 1-alkylimidazole co-solvents enhances cellulose dissolution by the IL and that the role of these co-solvents is mainly to increase mass transport by reducing the viscosity of the mixtures.


Asunto(s)
Celulosa/química , Gossypium/química , Imidazoles/química , Líquidos Iónicos/química , Conductividad Eléctrica , Solubilidad , Viscosidad
12.
Mater Sci Eng C Mater Biol Appl ; 99: 333-343, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30889707

RESUMEN

Bacterial cellulose (BC) is a bio-derived polymer, and it has been considered as an excellent candidate material for tissue engineering. In this study, a crossed groove/column micropattern was constructed on spongy, porous BC using low-energy CO2 laser photolithography. Applying the targeted immobilization of a tetrapeptide consisting of Arginine-Glycine-Aspartic acid-Serine (H-Arg-Gly-Asp-Ser-OH, RGDS) as a fibronectin onto the column platform surface, the resulting micropatterned BC (RGDS-MPBC) exhibited dual affinities to fibroblasts and collagen. Material characterization of RGDS-MPBC revealed that the micropattern was built by the column part with size of ~100 × 100 µm wide and ~100 µm deep, and the groove part with size of ~150 µm wide. Hydrating the MPBC did not result in the collapse of the integrity of the micropattern, suggesting its potential application in a highly hydrated wound environment. Cell culture assays revealed that the RGDS-MPBC exhibited an improved cytotoxicity to mouse fibroblasts L929, as compared to the pristine BC. Meanwhile, it was observed that the RGDS-MPBC was able to guide the ordered aggregation of human skin fibroblast (HSF) cells on the column platform surface, and no HSF cells were found in the groove channels. Over time, it was found that a dense network of collagen was gradually established across the groove channels. Furthermore, the in-vivo animal study preliminarily demonstrated the scar-free healing potential of the micropatterned BC materials. Therefore, this RGDS-MPBC material exhibited its advantages in guiding cell migration and collagen distribution, which could present a prospect in the establishment of "basket-woven" organization of collagen in normal skin tissue against the formation of dense, parallel aggregation of collagen fibers in scar tissue toward scar-free wound healing outcome.


Asunto(s)
Acetobacter/química , Celulosa/química , Cicatriz/patología , Láseres de Gas , Microtecnología/métodos , Impresión/métodos , Cicatrización de Heridas , Animales , Línea Celular , Celulosa/ultraestructura , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Humanos , Ratones , Oligopéptidos/química , Ratas Sprague-Dawley , Piel/patología , Espectroscopía Infrarroja por Transformada de Fourier , Agua/química
13.
Biomed Res Int ; 2016: 2389895, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27595097

RESUMEN

Polydopamine (PDA) prepared in the form of a layer of polymerized dopamine (DA) in a weak alkaline solution has been used as a versatile biomimetic surface modifier as well as a broadly used immobilizing macromolecule. This review mainly discusses the progress of biomaterial surface modification inspired by the participation of PDA in bone tissue engineering. A comparison between PDA-assisted coating techniques and traditional surface modification applied to bone tissue engineering is first presented. Secondly, the chemical composition and the underlying formation mechanism of PDA coating layer as a unique surface modifier are interpreted and discussed. Furthermore, several typical examples are provided to evidence the importance of PDA-assisted coating techniques in the construction of bone biosubstitutes and the improvement of material biocompatibility. Nowadays, the application of PDA as a superior surface modifier in multifunctional biomaterials is drawing tremendous interests in bone tissue scaffolds to promote the osteointegration for bone regeneration.


Asunto(s)
Sustitutos de Huesos/química , Indoles/química , Polímeros/química , Ingeniería de Tejidos/métodos , Animales , Materiales Biocompatibles/química , Biomimética , Regeneración Ósea , Materiales Biocompatibles Revestidos , Humanos , Ratones , Osteogénesis , Propiedades de Superficie
14.
Carbohydr Polym ; 100: 9-16, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24188832

RESUMEN

Fourier transform infrared (FTIR) spectra of cotton fibers harvested at different stages of development were acquired using Universal Attenuated Total Reflectance FTIR (UATR-FTIR). The main goal of the study was to monitor cell wall changes occurring during different phases of cotton fiber development. Two cultivars of Gossypium hirsutum L. were planted in a greenhouse (Texas Marker-1 and TX55). On the day of flowering, individual flowers were tagged and bolls were harvested. From fibers harvested on numerous days between 10 and 56 dpa, the FTIR spectra were acquired using UATR (ZnSe-Diamond crystal) with no special sample preparation. The changes in the FTIR spectra were used to document the timing of the transition between primary and secondary cell wall synthesis. Changes in cellulose during cotton fiber growth and development were identified through changes in numerous vibrations within the spectra. The intensity of the vibration bands at 667 and 897 cm(-1) correlated with percentage of cellulose analyzed chemically.


Asunto(s)
Pared Celular/metabolismo , Celulosa/metabolismo , Fibra de Algodón , Gossypium/citología , Gossypium/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier
15.
J Biomed Mater Res B Appl Biomater ; 101(6): 1050-60, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23559444

RESUMEN

Three-dimensional interconnected porous poly(ε-caprolactone) scaffolds have been prepared by a novel solventless scaffold fabrication approach combining cryomilling and compression molding/porogen leaching techniques. This study investigated the effects of processing parameters on scaffold morphology and properties for tissue regeneration. Specifically, the effects of molding temperature, cryomilling time, and porogen mix were examined. Fifty percentage of porous scaffolds were fabricated with a range of properties: mean pore size from ∼40 to 125 µm, water uptake from ∼50 to 86%, compressive modulus from ∼45 to 84 MPa, and compressive strength at 10% strain from ∼3 to 4 MPa. Addition of 60 wt % NaCl salt resulted in a ∼50% increase in porosity in multimodal pore-size structures that depended on the method of NaCl addition. Water uptake ranged from ∼61 to 197%, compressive modulus from ∼4 to 8.6 MPa, and compressive strength at 10% strain from ∼0.36 to 0.40 MPa. Results suggest that this approach provides a controllable strategy for the design and fabrication of 3D interconnected porous biodegradable scaffolds for load-bearing tissue regeneration.


Asunto(s)
Materiales Biocompatibles/química , Poliésteres/química , Andamios del Tejido/química , Absorción , Fuerza Compresiva , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Porosidad , Regeneración , Cloruro de Sodio , Termodinámica , Ingeniería de Tejidos , Agua , Soporte de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA