Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Med Genet ; 60(9): 885-893, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36788019

RESUMEN

BACKGROUND: Joubert syndrome (JS) is a neurodevelopmental ciliopathy characterised by a distinctive mid-hindbrain malformation, the 'molar tooth sign'. Over 40 JS-associated genes are known, accounting for two-thirds of cases. METHODS: While most variants are novel or extremely rare, we report on 11 recurring variants in seven genes, including three known 'founder variants' in the Ashkenazi Jewish, Hutterite and Finnish populations. We evaluated variant frequencies in ~550 European patients with JS and compared them with controls (>15 000 Italian plus gnomAD), and with an independent cohort of ~600 JS probands from the USA. RESULTS: All variants were markedly enriched in the European JS cohort compared with controls. When comparing allele frequencies in the two JS cohorts, the Ashkenazim founder variant (TMEM216 c.218G>T) was significantly enriched in American compared with European patients with JS, while MKS1 c.1476T>G was about 10 times more frequent among European JS. Frequencies of other variants were comparable in the two cohorts. Genotyping of several markers identified four novel European founder haplotypes.Two recurrent variants (MKS1 c.1476T>G and KIAA0586 c.428delG), have been detected in homozygosity in unaffected individuals, suggesting they could act as hypomorphic variants. However, while fibroblasts from a MKS1 c.1476T>G healthy homozygote showed impaired ability to form primary cilia and mildly reduced ciliary length, ciliary parameters were normal in cells from a KIAA0586 c.428delG healthy homozygote. CONCLUSION: This study contributes to understand the complex genetic landscape of JS, explain its variable prevalence in distinct geographical areas and characterise two recurrent hypomorphic variants.


Asunto(s)
Anomalías Múltiples , Anomalías del Ojo , Enfermedades Renales Quísticas , Humanos , Cerebelo/anomalías , Anomalías Múltiples/genética , Anomalías del Ojo/genética , Enfermedades Renales Quísticas/genética , Retina/anomalías
2.
Am J Hum Genet ; 104(5): 914-924, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30982611

RESUMEN

Glypicans are a family of cell-surface heparan sulfate proteoglycans that regulate growth-factor signaling during development and are thought to play a role in the regulation of morphogenesis. Whole-exome sequencing of the Australian family that defined Keipert syndrome (nasodigitoacoustic syndrome) identified a hemizygous truncating variant in the gene encoding glypican 4 (GPC4). This variant, located in the final exon of GPC4, results in premature termination of the protein 51 amino acid residues prior to the stop codon, and in concomitant loss of functionally important N-linked glycosylation (Asn514) and glycosylphosphatidylinositol (GPI) anchor (Ser529) sites. We subsequently identified seven affected males from five additional kindreds with novel and predicted pathogenic variants in GPC4. Segregation analysis and X-inactivation studies in carrier females provided supportive evidence that the GPC4 variants caused the condition. Furthermore, functional studies of recombinant protein suggested that the truncated proteins p.Gln506∗ and p.Glu496∗ were less stable than the wild type. Clinical features of Keipert syndrome included a prominent forehead, a flat midface, hypertelorism, a broad nose, downturned corners of mouth, and digital abnormalities, whereas cognitive impairment and deafness were variable features. Studies of Gpc4 knockout mice showed evidence of the two primary features of Keipert syndrome: craniofacial abnormalities and digital abnormalities. Phylogenetic analysis demonstrated that GPC4 is most closely related to GPC6, which is associated with a bone dysplasia that has a phenotypic overlap with Keipert syndrome. Overall, we have shown that pathogenic variants in GPC4 cause a loss of function that results in Keipert syndrome, making GPC4 the third human glypican to be linked to a genetic syndrome.


Asunto(s)
Sordera/congénito , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Variación Genética , Glipicanos/genética , Deformidades Congénitas de las Extremidades Inferiores/genética , Deformidades Congénitas de las Extremidades Inferiores/patología , Adulto , Niño , Preescolar , Sordera/genética , Sordera/patología , Femenino , Humanos , Lactante , Masculino , Linaje , Fenotipo , Adulto Joven
3.
Clin Genet ; 100(2): 187-200, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33955014

RESUMEN

Mutations affecting the transcriptional regulator Ankyrin Repeat Domain 11 (ANKRD11) are mainly associated with the multisystem developmental disorder known as KBG syndrome, but have also been identified in individuals with Cornelia de Lange syndrome (CdLS) and other developmental disorders caused by variants affecting different chromatin regulators. The extensive functional overlap of these proteins results in shared phenotypical features, which complicate the assessment of the clinical diagnosis. Additionally, re-evaluation of individuals at a later age occasionally reveals that the initial phenotype has evolved toward clinical features more reminiscent of a developmental disorder different from the one that was initially diagnosed. For this reason, variants in ANKRD11 can be ascribed to a broader class of disorders that fall within the category of the so-called chromatinopathies. In this work, we report on the clinical characterization of 23 individuals with variants in ANKRD11. The subjects present primarily with developmental delay, intellectual disability and dysmorphic features, and all but two received an initial clinical diagnosis of either KBG syndrome or CdLS. The number and the severity of the clinical signs are overlapping but variable and result in a broad spectrum of phenotypes, which could be partially accounted for by the presence of additional molecular diagnoses and distinct pathogenic mechanisms.


Asunto(s)
Anomalías Múltiples/etiología , Enfermedades del Desarrollo Óseo/etiología , Discapacidad Intelectual/etiología , Proteínas Represoras/genética , Anomalías Dentarias/etiología , Anomalías Múltiples/genética , Adolescente , Enfermedades del Desarrollo Óseo/genética , Niño , Preescolar , Cara/anomalías , Facies , Femenino , Humanos , Discapacidad Intelectual/genética , Masculino , Mutación , Linaje , Anomalías Dentarias/genética , Adulto Joven
4.
Am J Med Genet A ; 185(8): 2417-2433, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34042254

RESUMEN

Biallelic loss-of-function variants in the thrombospondin-type laminin G domain and epilepsy-associated repeats (TSPEAR) gene have recently been associated with ectodermal dysplasia and hearing loss. The first reports describing a TSPEAR disease association identified this gene is a cause of nonsyndromic hearing loss, but subsequent reports involving additional affected families have questioned this evidence and suggested a stronger association with ectodermal dysplasia. To clarify genotype-phenotype associations for TSPEAR variants, we characterized 13 individuals with biallelic TSPEAR variants. Individuals underwent either exome sequencing or panel-based genetic testing. Nearly all of these newly reported individuals (11/13) have phenotypes that include tooth agenesis or ectodermal dysplasia, while three newly reported individuals have hearing loss. Of the individuals displaying hearing loss, all have additional variants in other hearing-loss-associated genes, specifically TMPRSS3, GJB2, and GJB6, that present competing candidates for their hearing loss phenotype. When presented alongside previous reports, the overall evidence supports the association of TSPEAR variants with ectodermal dysplasia and tooth agenesis features but creates significant doubt as to whether TSPEAR variants are a monogenic cause of hearing loss. Further functional evidence is needed to evaluate this phenotypic association.


Asunto(s)
Anodoncia/diagnóstico , Anodoncia/genética , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Variación Genética , Fenotipo , Proteínas/genética , Alelos , Sustitución de Aminoácidos , Estudios de Cohortes , Femenino , Estudios de Asociación Genética , Sitios Genéticos , Humanos , Masculino , Mutación , Linaje , Radiografía
5.
Am J Med Genet A ; 182(5): 1073-1083, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32124548

RESUMEN

KBG syndrome (MIM #148050) is an autosomal dominant disorder characterized by developmental delay, intellectual disability, distinct craniofacial anomalies, macrodontia of permanent upper central incisors, skeletal abnormalities, and short stature. This study describes clinical features of 28 patients, confirmed by molecular testing of ANKRD11 gene, and three patients with 16q24 deletion encompassing ANKRD11 gene, diagnosed in a single center. Common clinical features are reported, together with uncommon findings, clinical expression in the first years of age, distinctive associations, and familial recurrences. Unusual manifestations emerging from present series include juvenile idiopathic arthritis, dysfunctional dysphonia, multiple dental agenesis, idiopathic precocious telarche, oral frenula, motor tics, and lipoma of corpus callosum, pilomatrixoma, and endothelial corneal polymorphic dystrophy. Facial clinical markers suggesting KBG syndrome before 6 years of age include ocular and mouth conformation, wide eyebrows, synophrys, long black eyelashes, long philtrum, thin upper lip. General clinical symptoms leading to early genetic evaluation include developmental delay, congenital malformations, hearing anomalies, and feeding difficulties. It is likely that atypical clinical presentation and overlapping features in patients with multiple variants are responsible for underdiagnosis in KBG syndrome. Improved knowledge of common and atypical features of this disorder improves clinical management.


Asunto(s)
Anomalías Múltiples/genética , Enfermedades del Desarrollo Óseo/genética , Enanismo/genética , Discapacidad Intelectual/genética , Proteínas Represoras/genética , Anomalías Dentarias/genética , Anomalías Múltiples/patología , Enfermedades del Desarrollo Óseo/patología , Preescolar , Deleción Cromosómica , Cromosomas Humanos Par 16/genética , Hibridación Genómica Comparativa , Enanismo/patología , Facies , Femenino , Predisposición Genética a la Enfermedad , Humanos , Discapacidad Intelectual/patología , Masculino , Fenotipo , Anomalías Dentarias/patología
6.
Am J Hum Genet ; 89(2): 289-94, 2011 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-21782149

RESUMEN

KBG syndrome is characterized by intellectual disability associated with macrodontia of the upper central incisors as well as distinct craniofacial findings, short stature, and skeletal anomalies. Although believed to be genetic in origin, the specific underlying defect is unknown. Through whole-exome sequencing, we identified deleterious heterozygous mutations in ANKRD11 encoding ankyrin repeat domain 11, also known as ankyrin repeat-containing cofactor 1. A splice-site mutation, c.7570-1G>C (p.Glu2524_Lys2525del), cosegregated with the disease in a family with three affected members, whereas in a simplex case a de novo truncating mutation, c.2305delT (p.Ser769GlnfsX8), was detected. Sanger sequencing revealed additional de novo truncating ANKRD11 mutations in three other simplex cases. ANKRD11 is known to interact with nuclear receptor complexes to modify transcriptional activation. We demonstrated that ANKRD11 localizes mainly to the nuclei of neurons and accumulates in discrete inclusions when neurons are depolarized, suggesting that it plays a role in neural plasticity. Our results demonstrate that mutations in ANKRD11 cause KBG syndrome and outline a fundamental role of ANKRD11 in craniofacial, dental, skeletal, and central nervous system development and function.


Asunto(s)
Enfermedades del Desarrollo Óseo/complicaciones , Huesos/anomalías , Discapacidad Intelectual/complicaciones , Mutación/genética , Proteínas Represoras/genética , Anomalías Dentarias/complicaciones , Anomalías Múltiples/genética , Adulto , Secuencia de Aminoácidos , Secuencia de Bases , Enfermedades del Desarrollo Óseo/genética , Núcleo Celular/metabolismo , Niño , Análisis Mutacional de ADN , Exones/genética , Facies , Femenino , Humanos , Discapacidad Intelectual/genética , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Linaje , Fenotipo , Estructura Terciaria de Proteína , Proteínas Represoras/química , Anomalías Dentarias/genética , Adulto Joven
7.
Am J Hum Genet ; 87(2): 265-73, 2010 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-20691405

RESUMEN

Ectodermal dysplasias form a large disease family with more than 200 members. The combination of hair and tooth abnormalities, alopecia, and cutaneous syndactyly is characteristic of ectodermal dysplasia-syndactyly syndrome (EDSS). We used a homozygosity mapping approach to map the EDSS locus to 1q23 in a consanguineous Algerian family. By candidate gene analysis, we identified a homozygous mutation in the PVRL4 gene that not only evoked an amino acid change but also led to exon skipping. In an Italian family with two siblings affected by EDSS, we further detected a missense and a frameshift mutation. PVRL4 encodes for nectin-4, a cell adhesion molecule mainly implicated in the formation of cadherin-based adherens junctions. We demonstrated high nectin-4 expression in hair follicle structures, as well as in the separating digits of murine embryos, the tissues mainly affected by the EDSS phenotype. In patient keratinocytes, mutated nectin-4 lost its capability to bind nectin-1. Additionally, in discrete structures of the hair follicle, we found alterations of the membrane localization of nectin-afadin and cadherin-catenin complexes, which are essential for adherens junction formation, and we found reorganization of actin cytoskeleton. Together with cleft lip and/or palate ectodermal dysplasia (CLPED1, or Zlotogora-Ogur syndrome) due to an impaired function of nectin-1, EDSS is the second known "nectinopathy" caused by mutations in a nectin adhesion molecule.


Asunto(s)
Moléculas de Adhesión Celular/genética , Displasia Ectodérmica/complicaciones , Displasia Ectodérmica/genética , Mutación/genética , Sindactilia/complicaciones , Sindactilia/genética , Anomalías Múltiples/genética , Adulto , Secuencia de Aminoácidos , Animales , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/metabolismo , Niño , Extremidades/embriología , Familia , Femenino , Regulación del Desarrollo de la Expresión Génica , Cabello/patología , Humanos , Masculino , Ratones , Datos de Secuencia Molecular , Linaje , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Piel/patología , Síndrome
8.
Front Immunol ; 13: 869042, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464479

RESUMEN

A 48-year-old patient affected with congenital generalized lipodystrophy type 4 failed to respond to two doses of the BNT162b2 vaccine, consisting of lipid nanoparticle encapsulated mRNA. As the disease is caused by biallelic variants of CAVIN1, a molecule indispensable for lipid endocytosis and regulation, we complemented the vaccination cycle with a single dose of the Ad26.COV2 vaccine. Adenovirus-based vaccine entry is mediated by the interaction with adenovirus receptors and transport occurs in clathrin-coated pits. Ten days after Ad26.COV2 administration, S- and RBD-specific antibodies and high-affinity memory B cells increased significantly to values close to those observed in Health Care Worker controls.


Asunto(s)
Vacunas contra el Adenovirus , COVID-19 , Lipodistrofia Generalizada Congénita , Vacuna BNT162 , Vacunas contra la COVID-19/efectos adversos , Humanos , Liposomas , Persona de Mediana Edad , Nanopartículas , SARS-CoV-2 , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA