Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Biomacromolecules ; 19(3): 803-815, 2018 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-29451980

RESUMEN

Synthetic lethality is a molecular-targeted therapy for selective killing of cancer cells. We exploited a lethal interaction between superoxide dismutase 1 inhibition and Bloom syndrome gene product (BLM) defect for the treatment of colorectal cancer (CRC) cells (HCT 116) with a customized lung cancer screen-1-loaded nanocarrier (LCS-1-NC). The drug LCS-1 has poor aqueous solubility. To overcome its limitations, a customized NC, composed of a magnetite core coated with three polymeric shells, namely, aminocellulose (AC), branched poly(amidoamine), and paraben-PEG, was developed for encapsulating LCS-1. Encapsulation efficiency and drug loading were found to be 74% and 8.2%, respectively. LCS-1-NC exhibited sustained release, with ∼85% of drug release in 24 h. Blank NC (0.5 mg/mL) exhibited cytocompatibility toward normal cells, mainly due to the AC layer. LCS-1-NC demonstrated high killing selectivity (104 times) toward BLM-deficient HCT 116 cells over BLM-proficient HCT 116 cells. Due to enhanced efficacy of the drug using NC, the sensitivity difference for BLM-deficient cells increased to 1.7 times in comparison to that with free LCS-1. LCS-1-NC induced persistent DNA damage and apoptosis, which demonstrates that LCS-1-NC effectively and preferentially killed BLM-deficient CRC cells. This is the first report on the development of a potential drug carrier to improve the therapeutic efficacy of LCS-1 for specific killing of CRC cells having BLM defects.


Asunto(s)
Antineoplásicos , Materiales Biocompatibles Revestidos , Neoplasias Colorrectales/tratamiento farmacológico , Portadores de Fármacos , Nanopartículas de Magnetita , RecQ Helicasas/deficiencia , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Línea Celular Tumoral , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacocinética , Materiales Biocompatibles Revestidos/farmacología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacología , Humanos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapéutico
2.
Biomater Sci ; 12(13): 3389-3400, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38804911

RESUMEN

Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory joint disorder affecting nearly 1% of the global population. In RA, synovial joints are infiltrated by inflammatory mediators and enzymes, leading to articular cartilage deterioration, joint damage, and bone erosion. Herein, the 9-aminoacridine-6-O-stearoyl-L-ascorbic acid hydrogel (9AA-SAA hydrogel) was formulated by the heat-cool method and further characterized for surface charge, surface morphology, rheology, and cytocompatibility. Furthermore, we evaluated the therapeutic efficacy of the 9AA-SAA hydrogel, an enzyme-responsive drug delivery system with on-and-off switching capabilities based on disease severity against collagen-induced experimental arthritis in Wistar rats. The anti-inflammatory action of the US FDA-approved drug 9-aminoacridine (9AA) was revealed which acted through nuclear receptor subfamily 4 group A member 1 (NR4A1), an anti-inflammatory orphan nuclear receptor that inhibits nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB). Furthermore, we have explored the role of ascorbic acid, an active moiety of 6-O-stearoyl-L-ascorbic acid (SAA), in promoting the production of collagen production through ten-eleven translocation-2 (TET2) upregulation. Targeting through NR4A1 and TET2 could be the probable mechanism for the treatment of experimental arthritis. The combination of 9AA and ascorbic acid demonstrated enhanced therapeutic efficacy in the 9AA-SAA hydrogel, significantly reducing the severity of experimental arthritis. This approach, in contrast to existing treatments with limited effectiveness, presents a promising and more effective strategy for RA treatment by mitigating inflammation in experimental arthritis.


Asunto(s)
Artritis Experimental , Ácido Ascórbico , Hidrogeles , Ratas Wistar , Animales , Ácido Ascórbico/farmacología , Ácido Ascórbico/química , Ácido Ascórbico/administración & dosificación , Hidrogeles/química , Hidrogeles/administración & dosificación , Hidrogeles/farmacología , Ratas , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Masculino , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/administración & dosificación , Ratones , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/administración & dosificación , Inyecciones
3.
ACS Biomater Sci Eng ; 8(5): 2088-2095, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35452219

RESUMEN

Ulcerative colitis (UC) is a chronic inflammatory disease, which deleteriously affects the lower end of the gastrointestinal tract, i.e., the colon and the rectum. UC affects colonic inflammatory homeostasis and disrupts intestinal barrier functions. Intestinal tissue damage activates the immune system and collectively worsens the disease condition via the production of various cytokines. Ongoing therapeutics of UC have marked limitations like rapid clearance, extensive first-pass metabolism, poor drug absorption, very low solubility, bioavailability, etc. Because of these restrictions, the management of UC demands a rational approach that selectively delivers the drug at the site of action to overcome the therapeutic limiting factors. Metallic nanoparticles (NPs) have good therapeutic efficacy against colitis, but their uses are limited due to adverse effects on the biological system. In this study, we have used biocompatible thiol-functionalized cellulose-grafted copper oxide nanoparticles (C-CuI/IIO NPs) to treat UC. The metal NPs alleviated the colitis condition as evidenced by the colon length and observed physical parameters. Analysis of histopathology demonstrated the recovery of the colon architecture damaged by dextran sulfate sodium-induced colitis. Treatment with C-CuI/IIO NPs reduced the disintegration of goblet cells and the retainment of sulfomucin. Significant downregulation of inflammatory markers like MPO activity, as well as levels of nitrite and TNF-α, was found following C-CuI/IIO NP treatment. The observations from the study suggested that intrarectal treatment of colitis with cellulose-based C-CuI/IIO NPs successfully combated the intestinal inflammatory condition.


Asunto(s)
Colitis Ulcerosa , Colitis , Nanopartículas , Animales , Celulosa/efectos adversos , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Cobre/efectos adversos , Ratones , Nanopartículas/uso terapéutico , Óxidos/efectos adversos , Compuestos de Sulfhidrilo/efectos adversos
4.
ACS Biomater Sci Eng ; 8(6): 2636-2643, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35513890

RESUMEN

Gastric ulcer (GU) is the most common and chronic inflammatory condition mediated by multiple immune cells like neutrophils, macrophages, and lymphocytes with multiple pro-inflammatory cytokine interleukins such as IL-8, IL-10, IL-ß, and interferon-γ (IFN-γ). Copper (Cu) is one of the essential micronutrients mainly found in the liver and brain. It plays a major role in metabolism, enzyme conversion, free radical scavenging, trafficking agents, and many others. Due to its various roles in the biological system, it can also be used as a therapeutic agent in many diseases like colon cancer, bone fracture healing, angiogenesis, as an antibacterial, wound-healing and radiotherapeutic agents. In this study, we used thiol-functionalized cellulose-conjugated copper-oxide nanoparticles (CuI/IIO NPs) synthesized under environmentally friendly conditions. We have evaluated the effects of cellulose-conjugated CuI/IIO NPs against ethanol-induced gastric ulcer in Wistar rats. The cellulose-conjugated CuI/IIO NPs were evaluated against different physical, histochemical, and inflammatory parameters. The NPs promoted mucosal healing by ameliorating ulcerative damage, restoring the histoarchitecture of gastric mucosa, and inhibiting pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1 beta (IL-1ß), and other inflammatory biomarkers such as myeloperoxidase (MPO) activity and nitric oxide (NO) levels. The current study's findings suggest that cellulose-conjugated CuI/IIO NPs exerted antiulcer effects on the preclinical rat model and have promising potential as a novel therapeutic agent for the treatment of gastric ulcers.


Asunto(s)
Nanopartículas , Úlcera Gástrica , Animales , Celulosa/uso terapéutico , Cobre/uso terapéutico , Etanol/efectos adversos , Nanopartículas/uso terapéutico , Óxido Nítrico/efectos adversos , Óxido Nítrico/metabolismo , Ratas , Ratas Wistar , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/tratamiento farmacológico , Úlcera Gástrica/patología
5.
ACS Appl Bio Mater ; 4(6): 5324-5335, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35007013

RESUMEN

We report the formulation of aminocellulose-grafted polymeric nanoparticles containing LCS-1 for synthetic lethal targeting of checkpoint kinase 2 (CHEK2)-deficient HCT116 colon cancer (CRC) cells to surpass the limitations associated with the solubility of LCS-1 (a superoxide dismutase inhibitor). Aminocellulose (AC), a highly biocompatible and biodegradable hydrophilic polymer, was grafted over polycaprolactone (PCL), and a nanoprecipitation method was employed for formulating nanoparticles containing LCS-1. In this study, we exploited the synthetic lethal interaction between SOD1 and CHEK2 for the specific inhibition of CHEK2-deficient HCT116 CRC cells using LCS-1-loaded PCL-AC NPs. Furthermore, the effects of formation of protein corona on PCL-AC nanoparticles were also assessed in terms of size, cellular uptake, and cell viability. LCS-1-loaded NPs were evaluated for their size, zeta potential, and polydispersity index using a zetasizer, and their morphological characteristics were assessed by transmission electron microscopy, scanning electron microscopy, and atomic force microscopy analyses. Cellular internalization using confocal microscopy exhibited that nanoparticles were uptaken by HCT116 cells. Also, nanoparticles were cytocompatible as they did not induce cytotoxicity in hTERT and HEK-293 cells. The LCS-1-loaded PCL-AC NPs were quite hemocompatible and were 240 times more selective in killing CHEK2-deficient cells as compared to CHEK2-proficient CRC cells. Moreover, PCL-AC NPs exhibited that the protein corona-coated nanoparticles were incubated in the human and fetal bovine sera as visualized by SDS-PAGE. A slight increment in hydrodynamic diameter was observed for corona-coated PCL-AC nanoparticles, and size increment was further confirmed by TEM. Corona-coated PCL-AC NPs also exhibited cellular uptake as demonstrated by flow cytometric analysis and did not cause cytotoxic effects on hTERT cells. The nanoformulation was developed to enhance therapeutic potential of the drug LCS-1 for enhanced lethality of colorectal cancer cells with CHEK2 deficiency.


Asunto(s)
Neoplasias del Colon , Nanopartículas , Corona de Proteínas , Animales , Bovinos , Quinasa de Punto de Control 2 , Células HEK293 , Humanos , Polímeros
6.
Biomater Sci ; 9(17): 5868-5883, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34286723

RESUMEN

Ulcerative colitis (UC) is an idiopathic inflammatory condition of colorectal regions. Existing therapies for UC face grave lacunae including off-target and other harmful side effects, extensive first-pass metabolism, rapid clearance, limited or poor drug absorption and various other limitations, resulting in lower bioavailability. These conditions demand advanced delivery strategies to inflammatory colonic conditions so that drugs can counter stomach acid, avail protective strategies at this pH and selectively deliver drugs to the colon. Therefore, this approach was undertaken to develop and characterize nanoparticles for the delivery of drugs glycyrrhizic acid as well as budesonide in UC. Biocompatible and biodegradable aminocellulose-conjugated polycaprolactone containing budesonide was covered onto gelatinous nanoparticles (NPs) loaded with GA. Nanoparticles were prepared by the solvent evaporation technique, which showed particle size of ∼230 nm, spherical shape, almost smooth morphological characters under transmission, scanning and atomic force microscopy. These NPs also improved disease activities like occult blood in the stool, length of the colon and fecal properties. The nanoparticle therapy appreciably decreased colonic mast cellular infiltration, significantly maintained mucin protection, ameliorated histological features of the colon. Furthermore, markers of inflammation such as iNOS, COX-2, IL1-ß, TNF-α, NO, and MPO were also appreciably ameliorated with the therapy of dual drug-loaded nanoparticles. Overall, these results establish that dual drug-loaded core-shell NPs exhibit superior therapeutic properties over the free or naïve forms of GA and budesonide in acute colon inflammation and present advantages that may be assigned to their ability to significantly inhibit colon inflammatory conditions.


Asunto(s)
Colitis Ulcerosa , Colitis , Nanopartículas , Colitis Ulcerosa/tratamiento farmacológico , Portadores de Fármacos/uso terapéutico , Humanos , Poliésteres
7.
Mater Sci Eng C Mater Biol Appl ; 120: 111700, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33545859

RESUMEN

Stroke remains the leading cause of morbidity and mortality. Stem cell-based therapy offers promising hope for survivors and their families. Despite the clinical translation of stem cell-based therapies in stroke patients for almost two decades, results of these randomized controlled trials are not very optimistic. In these lines, an amalgamation of nanocarriers based drug delivery with stem cells holds great promise in enhancing stroke recovery. In the present study, we treated oxygen-glucose deprivation (OGD) exposed dental pulp stem cells (DPSCs) and mesenchymal stem cells (MSCs) with sivelestat-loaded nanostructured lipid carriers (NLCs). Various physicochemical limitations associated with sivelestat drug applications and its recent inefficacy in the clinical trials necessitates the development of novel delivery approaches for sivelestat. Therefore, to improve its efficacy on the survival of DPSCs and MSCs cell types under OGD insult, the current NLCs were formulated and characterized. Resulting NLCs exhibited a hydrodynamic diameter of 160-180 nm by DLS technique and possessed good PDI values of 0.2-0.3. Their shape, size and surface morphology were corroborated with microscopic techniques like TEM, SEM, and AFM. FTIR and UV-Vis techniques confirmed nanocarrier's loading capacity, encapsulation efficiency of sivelestat, and drug release profile. Oxidative stress in DPSCs and MSCs was assessed by DHE and DCFDA staining, and cell viability was assessed by Trypan blue exclusion test and MTT assay. Results indicated that sivelestat-loaded NLCs protected the loss of cell membrane integrity and restored cell morphology. Furthermore, NLCs successfully defended human DPSCs and MSCs against OGD-induced oxidative and inflammatory stress. In conclusion, modulation of oxidative and inflammatory stress by treatment with sivelestat-loaded NLCs in DPSCs and MSCs provides a novel strategy to rescue stem cells during ischemic stroke.


Asunto(s)
Células Madre Mesenquimatosas , Nanoestructuras , Pulpa Dental , Portadores de Fármacos , Glucosa , Glicina/análogos & derivados , Humanos , Lípidos , Estrés Oxidativo , Oxígeno , Sulfonamidas
8.
Int J Biol Macromol ; 192: 1150-1159, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34653441

RESUMEN

Polymeric nanoparticles (NPs) are the most widely researched nanoformulations and gained broad acceptance in nanotherapeutics for targeted drug delivery and theranostics. However, lack of regulations, guidelines, harmonized standards, and limitations with their employability in clinical circumstances necessitates an in-depth understanding of their toxicology. Here, we examined the in-vivo toxicity of core-shell polymeric NPs made up of gelatin core coated with an outer layer of aminocellulose-grafted polycaprolactone (PCL-AC) synthesized for drug delivery purposes in inflammatory disorders. Nanoparticles were administered intravenously in Swiss albino mice, in multiple dosing (10, 25, and 50 mg/kg body weight) and outcomes of serum biochemistry analysis and histopathology evaluation exhibited that the highest 50 mg/kg administration of NPs altered biochemistry and histopathology aspects of vital organs, while doses of 10 and 25 mg/kg were safe and biocompatible. Further, mast cell (toluidine blue) staining confirmed that administration of the highest dose enhanced mast cell infiltration in tissues of vital organs, while lower doses did not exhibit any of these alterations. Therefore, the results of the present study establish that the NPs disposal in-vivo culminates into alterations in organ structure and function consequences such that lower doses are quite biocompatible and do not demonstrate any structural or functional toxicity while some toxicological effects start appearing at the highest dose.


Asunto(s)
Celulosa/química , Portadores de Fármacos , Gelatina/química , Nanopartículas/química , Poliésteres/administración & dosificación , Poliésteres/toxicidad , Pruebas de Toxicidad Aguda , Administración Intravenosa , Animales , Biopsia , Fenómenos Químicos , Sistemas de Liberación de Medicamentos , Ratones , Nanopartículas/ultraestructura , Tamaño de la Partícula , Poliésteres/química
9.
Mater Sci Eng C Mater Biol Appl ; 121: 111851, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33579485

RESUMEN

Ulcerative colitis (UC) is an idiopathic bowel disease involving chronic inflammation and ulcers in colon and implicates severe epithelial damage with disruption in colon homeostasis. Presently existing treatments possess serious concerns like off target effects and adverse reactions, drug inactivation, poor absorption and other complications resulting in poor bioavailability. In context of high risk of thrombotic events in UC patients, heparin can offer appreciable benefits in UC management due to its remarkable anti-coagulating properties, its ability to intervene inflammatory pathways and acceleration of wound healing process. However, oral administration of heparin being impractical due to harsh gastric acidic environment and heparin degradation, conventional heparin administration is done via intravenous route. Present study was designed to formulate, characterize and evaluate sustained release heparin formulation in mice model of experimental colitis. Heparin liposomes (HLp) were formulated by solvent evaporation and extrusion process and possessed hydrodynamic diameter of 242 ± 4.3 nm. Size, shape and surface morphology was confirmed by TEM, SEM and AFM micrographs while encapsulation efficiency and loading of heparin in optimized HLp were 59.61% and 12.27%, respectively. HLp enema administration ameliorated gross disease indices like body weight, colon length, stool consistency, fecal occult blood. Further, anti-inflammatory efficacy of HLp was established in histopathological analysis where HLp appreciably restored protective mucin layer, colon epithelial mucosal histoarchitecture and considerably attenuated mast cell infiltration in colon epithelia. Overall, results of this study indicate that HLp demonstrated an appreciable therapeutic efficacy in experimental colitis and these results are attributed to their ability to suppress inflammation.


Asunto(s)
Colitis Ulcerosa , Animales , Colitis Ulcerosa/tratamiento farmacológico , Colon , Enema , Heparina de Bajo-Peso-Molecular/farmacología , Heparina de Bajo-Peso-Molecular/uso terapéutico , Humanos , Liposomas , Ratones
10.
Carbohydr Polym ; 258: 117600, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33593531

RESUMEN

Rheumatoid arthritis (RA) is a chronic autoimmune disorder and serious cause of disability. Despite considerable advances in RA management, challenges like extensive drug metabolism and rapid clearance causes poor bioavailability. Core-shell nanocarriers for co-delivery of glycyrrhizic acid (GA) and budesonide against RA were developed. GA-loaded gelatin nanoparticles (NPs) were synthesized and coated with budesonide encapsulated aminocellulose-grafted polycaprolactone (PCL-AC). GA- and budesonide-loaded PCL-AC-gel NPs had diameter of 200-225 nm. Dual drug-loaded (DDL) NPs reduced joint swelling and erythema in rats while markedly ameliorating bone erosion evidenced by radiological analysis, suppressed collagen destruction, restored synovial tissue, bone and cartilage histoarchitecture with reduced inflammatory cells infiltration. NPs also reduced various inflammatory biomarkers such as TNF-α, IL-1ß, COX-2, iNOS. Results of this study suggest that dual NPs exerted superior therapeutic effects in RA compared to free drugs which may be attributed to slow and sustained drug release and NPs' ability to inhibit inflammatory mediators.


Asunto(s)
Artritis Reumatoide/metabolismo , Artritis Reumatoide/terapia , Celulosa/química , Gelatina/química , Nanopartículas/química , Poliésteres/química , Animales , Biomarcadores/metabolismo , Huesos/efectos de los fármacos , Budesonida/farmacología , Cartílago/efectos de los fármacos , Colágeno/química , Ciclooxigenasa 2/biosíntesis , Sistemas de Liberación de Medicamentos , Femenino , Fibroblastos/metabolismo , Ácido Glicirrínico/farmacología , Humanos , Inflamación , Interleucina-1beta/biosíntesis , Cinética , Espectroscopía de Resonancia Magnética , Óxido Nítrico Sintasa de Tipo II/biosíntesis , Ratas , Ratas Wistar , Factor de Necrosis Tumoral alfa/biosíntesis
11.
ACS Biomater Sci Eng ; 6(2): 1102-1111, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33464864

RESUMEN

Functionalized magnetic nanoparticles (MNPs) have attracted particular interest as potential drug delivery carriers as they offer dual advantage of delivering drugs to the target site complemented with magnetic hyperthermia-mediated therapy. Hyperbranched polymer-functionalized MNPs have the potential to perform a dual role of killing cancer cells by hyperthermia (by magnetite core) with apoptosis (by loaded niclosamide). These are formed by the co-precipitation of iron salts followed by aminocellulose grafting, branch growth, and PEGylation. NP formation was investigated by determining particle size, zeta potential, and microscopic (transmission electron microscopy, field-emission scanning electron microscopy, and atomic force microscopy) studies. Results showed that these nanocarriers were 107 ± 57 nm in size with a zeta potential of -18 mV and exist as NPs. Drug loading and encapsulation efficiency were calculated as 15.28 ± 2.72 and 76.41 ± 1.84%, respectively, using UV-vis spectroscopy. NPs were internalized into HCT116 cells as investigated using confocal microscopy and flow cytometry. Blank NPs at the dose of 200 µg/mL were found to be cytocompatible using hTERT cells and hemocompatible. The cell viability study suggested that niclosamide-loaded functionalized magnetic nanoparticles (NFMNPs) were more effective (7 times) than free niclosamide in killing colon cancer cells. Moreover, NFMNPs induced apoptosis in an immunofluorescence study of cleaved caspase-3. Exposure of NFMNPs to an alternating magnetic field (AMF) resulted in a slight increase in the rate of niclosamide release. AMF exposure drastically reduced cell viability due to dual effects of hyperthermia and niclosamide after treatment with NFMNPs. The potentiation of cell death due to dual effects of hyperthermia and niclosamide was further confirmed by Annexin-V/propidium iodide assay using flow cytometry. The results imply that niclosamide delivery through hyperbranched polymer-functionalized MNPs may serve as an effective strategy for the treatment of colorectal cancer.


Asunto(s)
Neoplasias del Colon , Hipertermia Inducida , Nanopartículas de Magnetita , Humanos , Hipertermia , Niclosamida/farmacología , Polímeros
12.
Nanotoxicology ; 14(10): 1362-1380, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33040614

RESUMEN

Iron-oxide nanoparticles are one of the most commercialized nanomaterials and have gained widespread acceptance in nanotherapeutics due to their ability for targeted drug delivery, bioimaging, and various other preclinical and clinical theranostic biomedical applications. However, the absence of regulations, guidelines, and harmonized standards as well as limitations associated with their use in clinical settings in the context of their safety and toxicity profiling necessitates in-depth understanding of their toxicological paradigms. Here we examine the toxicity of modified superparamagnetic iron oxide nanoparticles in Swiss albino mice in terms of body weight changes, organ coefficients, generalized and organ-specific biochemical, and various histological staining parameters after administration of bare (uncoated) magnetic nanoparticles (MNPs) and triple polymer-coated magnetic nanoparticles (MNP-AC-G2-pPEG). Both types of nanoparticles were administered intravenously, in three doses (5, 10, and 25 mg/kg body weight) and results of biochemical and histopathological assessment revealed that the highest dose of bare (uncoated) MNPs significantly altered biochemical and histoarchitectural aspects in vital organs, while coated NPs (MNP-AC-G2-pPEG) was found safe in almost all doses. Furthermore, results of toluidine blue (for mast cells) and Prussian blue (for iron deposition) staining also established that the highest dose administration of bare MNPs in animals significantly enhanced mast cell infiltration and iron deposition in tissue sections of most vital organs, while coated NPs did not demonstrate any such adverse effects. Overall, outcomes of this study aid in establishing that administration of uncoated (bare) magnetic NPs in vivo results in structural and functional toxicological modifications while the coating of these NPs with biocompatible and biodegradable polymers can significantly bring down the toxicity of these NPs.


Asunto(s)
Portadores de Fármacos/toxicidad , Nanopartículas de Magnetita/toxicidad , Polímeros/toxicidad , Animales , Bioacumulación , Relación Dosis-Respuesta a Droga , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Inyecciones Intravenosas , Nanopartículas de Magnetita/química , Ratones , Especificidad de Órganos , Polímeros/química , Relación Estructura-Actividad , Propiedades de Superficie , Pruebas de Toxicidad Aguda
13.
Bioresour Technol ; 181: 297-302, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25661309

RESUMEN

Deep Eutectic Solvents (DESs) have recently emerged as a new generation of ionic liquids for lignocellulose pretreatment. However, DESs contain salt components which tend to inactivate cellulase in the subsequent saccharification process. To alleviate this problem, it is necessary to evaluate the applicability of the DESs-Cellulase system. This was accomplished in the present study by first studying the stability of cellulase in the presence of selected DESs followed by applicability evaluation based on glucose production, energy consumption and kinetic performance. Results showed that the cellulase was able to retain more than 90% of its original activity in the presence of 10% (v/v) for glycerol based DES (GLY) and ethylene glycol based DES (EG). Furthermore, both DESs system exhibited higher glucose percentage enhancement and lower energy consumption as compared to diluted alkali system. Among the two DESs studied, EG showed comparatively better kinetic performance.


Asunto(s)
Celulasa/metabolismo , Lignina/metabolismo , Solventes/química , Aspergillus/enzimología , Biocatálisis/efectos de los fármacos , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Celulosa/química , Estabilidad de Enzimas/efectos de los fármacos , Glicol de Etileno/farmacología , Glucosa/análisis , Glicerol/farmacología , Cinética , Oryza/química , Hidróxido de Sodio/farmacología , Residuos
14.
Bioresour Technol ; 155: 177-81, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24457303

RESUMEN

Ionic liquids (ILs) have been used as an alternative green solvent for lignocelluloses pretreatment. However, being a salt, ILs exhibit an inhibitory effect on cellulases activity, thus making the subsequent saccharification inefficient. The aim of the present study is to produce salt-tolerant cellulases, with the rationale that the enzyme also tolerant to the presence of ILs. The enzyme was produced from a locally isolated halophilic strain and was characterized and assessed for its tolerance to different types of ionic liquids. The results showed that halophilic cellulases produced from Aspergillus terreus UniMAP AA-6 exhibited higher tolerance to ILs and enhanced thermo stability in the presence of high saline conditions.


Asunto(s)
Aspergillus/enzimología , Celulasa/metabolismo , Líquidos Iónicos/metabolismo , Lignina/metabolismo , Aspergillus/genética , Cartilla de ADN/genética , Hidrólisis , Reacción en Cadena de la Polimerasa , Salinidad , Temperatura
15.
Biomaterials ; 312: 122747, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39142219

RESUMEN

Directly administering medication to inflamed intestinal sites for treating ulcerative colitis (UC), poses significant challenges like retention time, absorption variability, side effects, drug stability, and non-specific delivery. Recent advancements in therapy to treat colitis aim to improve local drug availability that is enema therapy at the site of inflammation, thereby reducing systemic adverse effects. Nevertheless, a key limitation lies in enemas' inability to sustain medication in the colon due to rapid peristaltic movement, diarrhea, and poor local adherence. Therefore, in this work, we have developed site-specific thiolated mucoadhesive anionic nanoliposomes to overcome the limitations of conventional enema therapy. The thiolated delivery system allows prolonged residence of the delivery system at the inflamed site in the colon, confirmed by the adhesion potential of thiolated nanoliposomes using in-vitro and in-vivo models. To further provide therapeutic efficacy thiolated nanoliposomes were loaded with gallic acid (GA), a natural compound known for its antibacterial, antioxidant, and potent anti-inflammatory properties. Consequently, Gallic Acid-loaded Thiolated 2,6 DALP DMPG (GATh@APDL) demonstrates the potential for targeted adhesion to the inflamed colon, facilitated by their small size 100 nm and anionic nature. Therapeutic studies indicate that this formulation offers protective effects by mitigating colonic inflammation, downregulating the expression of NF-κB, HIF-1α, and MMP-9, and demonstrating superior efficacy compared to the free GA enema. The encapsulated GA inhibits the NF-κB expression, leading to enhanced expression of MUC2 protein, thereby promoting mucosal healing in the colon. Furthermore, GATh@APDL effectively reduces neutrophil infiltration and regulates immune cell quantification in colonic lamina propria. Our findings suggest that GATh@APDL holds promise for alleviating UC and addressing the limitations of conventional enema therapy.


Asunto(s)
Colitis Ulcerosa , Liposomas , Compuestos de Sulfhidrilo , Colitis Ulcerosa/tratamiento farmacológico , Liposomas/química , Animales , Compuestos de Sulfhidrilo/química , Humanos , Nanopartículas/química , Ratones , Colon/patología , Colon/efectos de los fármacos , Colon/metabolismo , Masculino , Sistemas de Liberación de Medicamentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA