Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mikrochim Acta ; 188(1): 10, 2021 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-33389164

RESUMEN

Hybrid aerogels are promising candidates for energy storage, biosensing, and medical applications, but the conventional fabrication methods, being time-consuming and complex, limit their widespread utilization. The critical issues affecting their functionality include the un-controllable particle dispersity, loading of active materials, and the porosity. We report a simple and efficient method to synthesize in situ reduced Au nanoparticles@graphene (Au@graphene) hybrid aerogel using near-infrared radiation (NIR), resulting the uniform loading of well-dispersed Au nanoparticles (Au-NPs) as well as in situ reduction of graphene oxide (GO) with enhanced conductivity. The concentration of iso-propylacrylamide and GO can be adjusted to control the aerogel pore size during the freeze-drying process. Reduction of HAuCl4 and GO to high extent under NIR light was confirmed with advanced characterization techniques. Density functional theory based calculations with generalized gradient-corrected functional (GGA/PW91) in the hybrid aerogel system, and dnd basis sets are used for the confirmation of possible interactions between the GO, Au-NPs, and the polymer. The as-designed highly porous and conductive aerogel shows an excellent humidity response (30-97%) and successfully removes the methylene blue pollutant from the aqueous solution to a high extent (90%). Therefore, Au@graphene hybrid aerogel is potentially an exciting candidate for a wide range of applications in the humidity sensing and biomedical disease detection.


Asunto(s)
Colorantes/química , Geles/química , Grafito/química , Humedad , Nanopartículas del Metal/química , Azul de Metileno/química , Resinas Acrílicas/química , Teoría Funcional de la Densidad , Geles/síntesis química , Oro/química , Grafito/síntesis química , Modelos Químicos , Porosidad , Agua/análisis , Agua/química , Contaminantes Químicos del Agua/química
2.
Langmuir ; 34(16): 4908-4913, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29605998

RESUMEN

Humidity sensors have received considerable attention in recent years because of their significance and wide applications in agriculture, industries, goods stores, and medical fields. However, the conventional humidity sensors usually possessed a complex sensing mechanism and low sensitivity and required a time-consuming, labor-intensive process. The exploration for an ideal sensing material to amplify the sensitivity of humidity sensors is still a big challenge. Herein, we developed a simple, low-cost, and scalable fabrication strategy to construct a highly sensitive humidity sensor based on polymer/gold nanoparticle (AuNP) hybrid materials. The hybrid polymer/AuNP aerogel was prepared by a simple freeze-drying method. By taking advantage of the conductivity of AuNPs and high surface area of the highly porous structure, the hybrid poly- N-isopropylacrylamide (PNIPAm)/AuNP aerogel showed high sensitivity to water molecules. Interestingly, the hybrid PNIPAm/AuNP aerogel-based humidity sensor can be used to detect human breath in different states, such as normal breath, fast breath, and deep breath, or in different individuals such as persons with illness, persons who are smoking, and persons who are normal, which is promising in practical flexible wearable devices for human health monitoring. In addition, the humidity sensor can be used in whistle tune recognition.


Asunto(s)
Pruebas Respiratorias/métodos , Geles/química , Oro/química , Humedad , Nanopartículas del Metal/química , Humanos , Polímeros/química , Agua/química
3.
Macromol Rapid Commun ; 39(9): e1800019, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29532592

RESUMEN

Although shape memory polymers have been highlighted widely and developed rapidly, it is still a challenging task to realize complex temporary shapes automatically in practical applications. Herein, a novel shape memory hydrogel with the ability of self-deformation is presented. Through constructing an anisotropic poly(acrylic acid)-polyacrylamide (PAAc-PAAm) structure, the obtained hydrogel exhibits stable self-deformation behavior in response to pH stimulus, and the shapes that formed automatically can be fixed by the coordination between carboxylic groups and Fe3+ ; therefore, self-deformation and shape memory behaviors are integrated in one system. Moreover, the magnitude of auto-deformation and shape memory could be adjusted with the concentration of corresponding ions, leading to programmable shape memory and shape recovery processes.


Asunto(s)
Resinas Acrílicas/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Polímeros/química , Resinas Acrílicas/síntesis química , Anisotropía , Iones/química
4.
J Mater Chem B ; 9(33): 6623-6633, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34378616

RESUMEN

Cancer treatment has been recently energized by nanomaterials that simultaneously offer diagnostic and therapeutic effects. Among the imaging and treatment modalities in frontline research today, magnetic resonance imaging (MRI) and phototherapy have gained significant interest due to their noninvasiveness among other intriguing benefits. Herein, Fe(iii) was adsorbed on titanium dioxide to develop magnetic Fe-TiO2 nanocomposites (NCs) which leverage the Fe moiety in a double-edge-sword approach to: (i) achieve T1-weighted MRI contrast enhancement, and (ii) improve the well-established photodynamic therapeutic efficacy of TiO2 nanoparticles. Interestingly, the proposed NCs exhibit classic T1 MRI contrast agent properties (r1 = 1.16 mM-1 s-1) that are comparable to those of clinically available contrast agents. Moreover, the NCs induce negligible cytotoxicity in traditional methods and show remarkable support to the proliferation of intestine organoids, an advanced toxicity evaluation system based on three-dimensional organoids, which could benefit their potential safe application for in vivo cancer theranostics. Aided by the Fenton reaction contribution of the Fe component of the Fe-TiO2 NCs, considerable photo-killing of cancer cells is achieved upon UV irradiation at very low (2.5 mW cm-2) intensity in typical cancer PDT. It is therefore expected that this study will guide the engineering of other biocompatible magnetic titania-based nanosystems with multi-faceted properties for biomedical applications.


Asunto(s)
Antineoplásicos/farmacología , Materiales Biocompatibles/farmacología , Imagen por Resonancia Magnética , Fármacos Fotosensibilizantes/farmacología , Fototerapia , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Fenómenos Magnéticos , Nanopartículas de Magnetita/química , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/patología , Ensayo de Materiales , Ratones , Ratones Endogámicos C57BL , Nanotubos/química , Tamaño de la Partícula , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/química , Titanio/química , Titanio/farmacología , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA