Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chem Res Toxicol ; 36(11): 1693-1702, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37871261

RESUMEN

Thorium-232 (232Th) is a radioactive heavy metal that is of increasing interest as a source of nuclear energy. However, upon nuclear incidents, the ingestion or inhalation of Th in major quantities can contribute to chemical and radiological health problems, including accumulation in the bone tissue and an increased risk of developing pancreatic, lung, and hematopoietic cancers. The major mineral component of the bone is hydroxyapatite (HAP)─also the major mineral component of the teeth. As such, the teeth are the first site of exposure upon oral ingestion of Th-contaminated materials, and Th can pose a potential risk to teeth development. In essence, in the case of human contamination, it is critical to identify effective chelating agents capable of removing Th. Using a batch study methodology, this present work investigates the uptake and the removal of Th from synthetic HAP and from teeth samples by diethylenetriamine pentaacetate (DTPA), ethylenediaminetetraacetic acid (EDTA), and other promising chelating agents. Th uptake over synthetic HAP exceeds 98% at physiological pH with <1 min of contact time and uptake exceeds 90% across the entire pH range. Regarding teeth, over 1 mg Th uptaken per gram of tooth is observed after 24 h. The overall effectiveness of chelating agents for the removal of Th from is as follows: DTPA > EDTA > NaF/mouthwash/3,4,3-LI(1,2-HOPO); this trend was observed both in synthetic HAP and Th-impregnated teeth samples.


Asunto(s)
Quelantes , Torio , Humanos , Ácido Edético , Durapatita , Ácido Pentético
2.
Chem Res Toxicol ; 34(3): 880-891, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33507734

RESUMEN

Uranium-238 (238U), a long-lived radiometal, is widespread in the environment because of both naturally occurring processes and anthropogenic processes. The ingestion or inhalation of large amounts of U is a major threat to humans, and its toxicity is considered mostly chemical rather than radiological. Therefore, a way to remove uranium ingested by humans from uranium-contaminated water or from the air is critically needed. This study investigated the uranium uptake by hydroxyapatite (HAP), a compound found in human bone and teeth. The uptake of U by teeth is a result of U transport as dissolved uranyl (UO22+) in contaminated water, and U adsorption has been linked to delays in both tooth eruption and development. In this present work, the influence of pH, contact time, initial U concentration, and buffer solution on the uptake and removal of U in synthetic HAP was investigated and modeled. The influence of pH (pH of human saliva, 6.7-7.4) on the uptake of uranyl was negligible. Furthermore, the kinetics were extremely fast; in one second of exposure, 98% of uranyl was uptaken by HAP. The uptake followed pseudo-second-order kinetics and a Freundlich isotherm model. A 0.2 M sodium carbonate solution removed all the uranyl from HAP after 1 h. Another series of in vitro tests were performed with real teeth as targets. We found that, for a 50 mg/L U in PBS solution adjusted to physiological pH, ∼35% of the uranyl was uptaken by the tooth after 1 h, following pseudo-first-order kinetics. Among several washing solutions tested, a commercially available carbonate, as well as a commercially available fluoride solution, enabled removal of all the uranyl taken up by the teeth.


Asunto(s)
Diente/metabolismo , Uranio/metabolismo , Durapatita/química , Durapatita/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Diente/química , Uranio/química , Uranio/aislamiento & purificación
3.
Environ Sci Pollut Res Int ; 31(19): 28620-28631, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38561535

RESUMEN

In recent years, there has been a significant rise in the utilization of amino-functionalized polystyrene nanoplastics (PS-NH2). This surge in usage can be attributed to their exceptional characteristics, including a substantial specific surface area, high energy, and strong reactivity. These properties make them highly suitable for a wide range of industrial and medical applications. Nevertheless, there is a growing apprehension regarding their potential toxicity to aquatic organisms, particularly when considering the potential impact of heavy metals like lead (Pb) on the toxicity of PS-NH2. Herein, we examined the toxic effects of sole PS-NH2 (90 nm) at five concentrations (e.g., 0, 0.125, 0.25, 0.5, and 1 mg/L), as well as the simultaneous exposure of PS-NH2 and Pb2+ (using two environmental concentrations, e.g., 20 µg/L for Pb low (PbL) and 80 µg/L for Pb higher (PbH)) to the microalga Chlorella vulgaris. After a 96-h exposure, significant differences in chlorophyll a content and algal growth (biomass) were observed between the control group and other treatments (ANOVA, p < 0.05). The algae exposed to PS-NH2, PS-NH2 + PbL, and PS-NH2 + PbH treatment groups exhibited dose-dependent toxicity responses to chlorophyll a content and biomass. According to the Abbott toxicity model, the combined toxicity of treatment groups of PS-NH2 and PbL,H showed synergistic effects. The largest morphological changes such as C. vulgaris' size reduction and cellular aggregation were evident in the medium treated with elevated concentrations of both PS-NH2 and Pb2+. The toxicity of the treatment groups followed the sequence PS-NH2 < PS-NH2 + PbL < PS-NH2 + PbH. These results contribute novel insights into co-exposure toxicity to PS-NH2 and Pb2+ in algae communities.


Asunto(s)
Antioxidantes , Chlorella vulgaris , Plomo , Peroxidación de Lípido , Poliestirenos , Chlorella vulgaris/efectos de los fármacos , Plomo/toxicidad , Poliestirenos/toxicidad , Peroxidación de Lípido/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad
4.
Chemosphere ; 358: 142152, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679178

RESUMEN

In recent years, filamentous algae blooms and microplastics (MPs) pollution have become two major ecological and environmental problems in urban water systems. In order to solve these two problems at the same time, this study explored the loading capacity of MPs on fresh filamentous algae, and successfully synthesized magnetic filamentous algae biochar loading with Fe3O4 by hydrothermal method, with the purpose of removing MPs from water. The magnetic filamentous algal biochar was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and so on. Experiments on adsorption kinetics, adsorption isotherms and optimum pH were carried out to explore the adsorption mechanism of MPs on magnetic filamentous algal biochar. The adsorption kinetics and adsorption isotherm models were evaluated, and the selection criterion for the appropriate model was determined by using the residual sum of squares (RSS) and Bayesian information criterion (BIC). Microscope images revealed that fresh filamentous algae could interact with MPs in the form of entanglement, adhesion and encapsulation. The average load of MPs in filamentous algae samples was 14.1 ± 5 items/g dry weight. The theoretical maximum adsorption capacities of polystyrene MPs (PS-MPs) by raw biochar (A500) and magnetic biochar with Fe3O4 (M2A500) were 176.99 mg/g and 215.58 mg/g, respectively. The adsorbent materials gave better reusability because they could be reused up to five times. Overall, these findings have provided new insights into the use of filamentous algae for in situ remediation of fluvial MPs pollution, as well as feasible strategies for the recycling of algal waste.


Asunto(s)
Carbón Orgánico , Microplásticos , Contaminantes Químicos del Agua , Carbón Orgánico/química , Adsorción , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Cinética
5.
Environ Technol ; 39(11): 1413-1421, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28504053

RESUMEN

A new strategy to enhance the antifouling potential of polyether sulfone (PES) membrane is presented. Chemically synthesized silver nanoparticles (AgNPs) were used to prepare a mixed-matrix PES membrane by the phase inversion technique. Primarily, AgNPs synthesis was confirmed by surface plasmon resonance at 410-430 nm using UV-Visible spectroscopy. X-ray diffraction analysis revealed that AgNPs were crystalline with a diameter of 21 ± 2 nm. Furthermore, PES membranes were characterized by energy dispersive X-ray spectroscopy to confirm the incorporation of AgNPs in membranes. Hydrophilicity of the membranes was enhanced, whereas roughness, mechanical strength and biofouling were relatively reduced after embedding the AgNPs. Antibacterial potential of AgNPs was evaluated for E. coli in the disc diffusion and colony-forming unit (CFU) count method. All of the membranes were assessed for antifouling activity by filtering a control dilution (106 CFU/ml) of E. coli and by counting CFU. Anti-biofouling activity of the membrane was observed with different concentrations of AgNPs. Maximum reduction (66%) was observed in membrane containing 1.5% of AgNPs. The addition of antibiotic ceftriaxone enhanced the antibacterial effect of AgNPs in PES membranes. Our practicable antifouling strategy may be applied to other polymeric membranes which may pave the new way to achieve sustainable and self-cleaning membrane reactors on large scale.


Asunto(s)
Incrustaciones Biológicas/prevención & control , Nanopartículas del Metal , Polímeros/química , Sulfonas/química , Antibacterianos , Escherichia coli , Plata
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA