Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Nano ; 18(10): 7580-7595, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38422400

RESUMEN

The lack of both digital light processing (DLP) compatible and biocompatible photopolymers, along with inappropriate material properties required for wearable sensor applications, substantially hinders the employment of DLP 3D printing in the fabrication of multifunctional hydrogels. Herein, we discovered and implemented a photoreactive poloxamer derivative, Pluronic F-127 diacrylate, which overcomes these limitations and is optimized to achieve DLP 3D printed micelle-based hydrogels with high structural complexity, resolution, and precision. In addition, the dehydrated hydrogels exhibit a shape-memory effect and are conformally attached to the geometry of the detection point after rehydration, which implies the 4D printing characteristic of the fabrication process and is beneficial for the storage and application of the device. The excellent cytocompatibility and in vivo biocompatibility further strengthen the potential application of the poloxamer micelle-based hydrogels as a platform for multifunctional wearable systems. After processing them with a lithium chloride (LiCl) solution, multifunctional conductive ionic hydrogels with antifreezing and antiswelling properties along with good transparency and water retention are easily prepared. As capacitive flexible sensors, the DLP 3D printed micelle-based hydrogel devices exhibit excellent sensitivity, cycling stability, and durability in detecting multimodal deformations. Moreover, the DLP 3D printed conductive hydrogels are successfully applied as real-time human motion and tactile sensors with satisfactory sensing performances even in a -20 °C low-temperature environment.


Asunto(s)
Micelas , Dispositivos Electrónicos Vestibles , Humanos , Poloxámero , Conductividad Eléctrica , Hidrogeles , Impresión Tridimensional
2.
Acta Biomater ; 161: 201-212, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36858164

RESUMEN

The stellate ganglion (SG) is a part of the sympathetic nervous system that has important regulatory effects on several human tissues and organs in the upper body. SG block and intervention have been clinically and preclinically implemented to manage chronic pain in the upper extremities, neck, head, and upper chest as well as chronic heart failure. However, there has been very limited effort to develop and investigate polymer-based drug delivery systems for local delivery to the SG. In this study, we fabricated red blood cell (RBC) membrane-camouflaged poly(lactic-co-glycolic acid) (PLGA) (PLGAM) microparticles for use as a potential long-term controlled release system for local drug delivery. The structure, size, and surface zeta potential results indicated that the spherical PLGAM microparticles were successfully fabricated. Both PLGA and PLGAM microparticles exhibited biocompatibility with human adipose mesenchymal stem cells (ADMSC) and satellite glial cells and showed hemocompatibility. In addition, both PLGA and PLGAM displayed no significant effects on the secretion of proinflammatory cytokines by human monocyte derived macrophages in vitro. We microinjected microparticles into rat SGs and evaluated the retention time of microparticles and the effects of the microparticles on inflammation in vivo over 21 days. Subsequently, we fabricated drug-loaded PLGAM microparticles by using GW2580, a colony stimulating factor-1 receptor inhibitor, as a model drug and assessed its encapsulation efficiency, drug release profiles, biocompatibility, and anti-inflammatory effects in vitro. Our results demonstrated the potential of PLGAM microparticles for long-term controlled local drug release in the SG. STATEMENT OF SIGNIFICANCE: SG block by locally injecting therapeutics to inhibit the activity of the sympathetic nerves provides a valuable benefit to manage chronic pain and chronic heart failure. We describe the fabrication of RBC membrane-camouflaged PLGA microparticles with cytocompatibility, hemocompatibility, and low immunogenicity, and demonstrate that they can be successfully and safely microinjected into rat SGs. The microparticle retention time within SG is over 21 days without eliciting detectable inflammation. Furthermore, we incorporate a CSF-1R inhibitor as a model drug and demonstrate the capacities of long-term drug release and regulation of macrophage functions. The strategies demonstrate the feasibility to locally microinject therapeutics loaded microparticles into SGs and pave the way for further efficacy and disease treatment evaluation.


Asunto(s)
Dolor Crónico , Ácido Poliglicólico , Ratas , Humanos , Animales , Preparaciones de Acción Retardada/farmacología , Preparaciones de Acción Retardada/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ácido Poliglicólico/química , Glicoles , Ácido Láctico/química , Microinyecciones , Ganglio Estrellado , Sistemas de Liberación de Medicamentos/métodos , Inflamación , Eritrocitos
3.
ACS Nano ; 17(4): 3847-3864, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36779870

RESUMEN

Postoperative abdominal adhesions are a common problem after surgery and can produce serious complications. Current antiadhesive strategies focus mostly on physical barriers and are unsatisfactory and inefficient. In this study, we designed and synthesized advanced injectable cream-like hydrogels with multiple functionalities, including rapid gelation, self-healing, antioxidation, anti-inflammation, and anti-cell adhesion. The multifunctional hydrogels were facilely formed by the conjugation reaction of epigallocatechin-3-gallate (EGCG) and hyaluronic acid (HA)-based microgels and poly(vinyl alcohol) (PVA) based on the dynamic boronic ester bond. The physicochemical properties of the hydrogels including antioxidative and anti-inflammatory activities were systematically characterized. A mouse cecum-abdominal wall adhesion model was implemented to investigate the efficacy of our microgel-based hydrogels in preventing postoperative abdominal adhesions. The hydrogels, with a high molecular weight HA, significantly decreased the inflammation, oxidative stress, and fibrosis and reduced the abdominal adhesion formation, compared to the commercial Seprafilm group or Injury-only group. Label-free quantitative proteomics analysis demonstrated that S100A8 and S100A9 expressions were associated with adhesion formation; the microgel-containing hydrogels inhibited these expressions. The microgel-containing hydrogels with multifunctionality decreased the formation of postoperative intra-abdominal adhesions in a murine model, demonstrating promise for clinical applications.


Asunto(s)
Pared Abdominal , Microgeles , Ratones , Animales , Hidrogeles/química , Pared Abdominal/patología , Pared Abdominal/cirugía , Adherencias Tisulares/prevención & control , Adherencias Tisulares/patología , Inflamación/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA