RESUMEN
The purpose of the currents study was to enhance bioavailability of rivaroxaban (RXB) and reduce the food effect. RXB loaded PLGA nanoparticles (RXB-PLGA-NPs) were prepared by emulsion solvent evaporation method and optimized using central composite design (CDD). The optimized RXB-PLGA-NPs (F8) with composition, PLGA (125 mg), PVA (0.5%w/w) and RXB (20 mg) was found optimum with particle size (496 ± 8.5 nm), PDI (0.607), ZP (- 18.41 ± 3.14 mV), %EE (87.9 ± 8.6) and %DL (9.5 ± 1.6). The optimized NPs (F8) was further evaluated in vitro for DSC, FTIR, SEM and in vitro release studies. A comparative pharmacokinetic studies with commercial tablet (XARELTO®) were conducted on fasted and fed state rats. Compared to commercial tablet (XARELTO®), the RXB-PLGA-NPs (F8) exhibited a significant enhancement of bioavailability in both fasted and fed state. In addition, the bioavailability of RXB from NPs (F8) was found unaffected in the presence of food.
Asunto(s)
Nanopartículas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Rivaroxabán , Administración Oral , Animales , Disponibilidad Biológica , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Preparaciones de Acción Retardada/farmacología , Interacciones Alimento-Droga , Masculino , Nanopartículas/química , Nanopartículas/uso terapéutico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacocinética , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Ratas , Ratas Wistar , Rivaroxabán/química , Rivaroxabán/farmacocinética , Rivaroxabán/farmacologíaRESUMEN
Tadalafil (TDL) is a phosphodiesterase-5 inhibitor (PDE5I), indicated for erectile dysfunction (ED). However, TDL exhibits poor aqueous solubility and dissolution rate, which may limit its application. This study aims to prepare amorphous solid dispersion (ASD) by spray-drying, using glycyrrhizin-a natural drug carrier. Particle and physicochemical characterizations were performed by particle size, polydispersity index measurement, yield, drug content estimation, Fourier Transformed Infrared (FTIR) spectroscopy, Differential scanning calorimetry (DSC), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and dissolution study. In order to evaluate the aphrodisiac activity of the prepared ASD, sexual behavior study was performed in male rats. It is further considered for the stability study. Our results revealed that TDL-GLZ spray-dried dispersion was a successful drug-carrier binary mixture. XRD and SEM showed that ASD of TDL with GLZ presented in the amorphous state and dented-spherical shape, unlike the drug indicating crystalline and spiked shaped. The optimized ASD3 formulation with particle size (1.92 µm), PDI (0.32), yield (97.78%) and drug content (85.00%) showed 4.07 folds' increase in dissolution rate compared to pure TDL. The results obtained from the in vivo study exhibit significantly improved aphrodisiac activity with ASD3. The stability study revealed that the prepared ASD3 did not show any remarkable changes in the dissolution and drug content for 1 month storage at room temperature.
RESUMEN
Despite the ongoing extensive research, cancer therapeutics still remains an area with unmet needs which is hampered by shortfall in the development of newer medicines. The present study discusses a nano-based combinational approach for treating solid tumor. Dual-loaded nanoparticles encapsulating gemcitabine HCl (GM) and simvastatin (SV) were fabricated by double emulsion solvent evaporation method and optimized. Optimized nanoparticles showed a particle size of 258 ± 2.4 nm, polydispersity index of 0.32 ± 0.052, and zeta potential of -12.5 mV. The size and the morphology of the particles wee further confirmed by transmission electron microscopy (TEM) and scanning electron microscopy, respectively of the particles. The entrapment efficiency of GM and SV in the nanoparticles was 38.5 ± 4.5% and 72.2 ± 5.6%, respectively. The in vitro release profile was studied for 60 h and showed Higuchi release pattern. The cell toxicity was done using MTT assay and lower IC50 was obtained with the nanoparticles as compared to the pure drug. The bioavailability of GM and SV in PLGA nanoparticles was enhanced by 1.4-fold and 1.3-fold respectively, compared to drug solution. The results revealed that co-delivery of GM and SV could be used for its oral delivery for the effective treatment of pancreatic cancer.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Desoxicitidina/análogos & derivados , Portadores de Fármacos/química , Neoplasias Pancreáticas/tratamiento farmacológico , Simvastatina/administración & dosificación , Administración Oral , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Disponibilidad Biológica , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Desoxicitidina/administración & dosificación , Desoxicitidina/farmacocinética , Composición de Medicamentos/métodos , Liberación de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Emulsiones , Humanos , Concentración 50 Inhibidora , Nanopartículas/química , Neoplasias Pancreáticas/patología , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Ratas , Ratas Wistar , Simvastatina/farmacocinética , GemcitabinaRESUMEN
The aim of this study was to formulate face-cut, melt-extruded pellets, and to optimize hot melt process parameters to obtain maximized sphericity and hardness by utilizing Soluplus(®) as a polymeric carrier and carbamazepine (CBZ) as a model drug. Thermal gravimetric analysis (TGA) was used to detect thermal stability of CBZ. The Box-Behnken design for response surface methodology was developed using three factors, processing temperature ( °C), feeding rate (%), and screw speed (rpm), which resulted in 17 experimental runs. The influence of these factors on pellet sphericity and mechanical characteristics was assessed and evaluated for each experimental run. Pellets with optimal sphericity and mechanical properties were chosen for further characterization. This included differential scanning calorimetry, drug release, hardness friability index (HFI), flowability, bulk density, tapped density, Carr's index, and fourier transform infrared radiation (FTIR) spectroscopy. TGA data showed no drug degradation upon heating to 190 °C. Hot melt extrusion processing conditions were found to have a significant effect on the pellet shape and hardness profile. Pellets with maximum sphericity and hardness exhibited no crystalline peak after extrusion. The rate of drug release was affected mainly by pellet size, where smaller pellets released the drug faster. All optimized formulations were found to be of superior hardness and not friable. The flow properties of optimized pellets were excellent with high bulk and tapped density.
Asunto(s)
Carbamazepina/química , Liberación de Fármacos/efectos de los fármacos , Polietilenglicoles/química , Polímeros/química , Estabilidad de Medicamentos , Calor , Tamaño de la Partícula , Polivinilos/química , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
The aim of this study was to evaluate a novel combination of Soluplus® and hypromellose acetate succinate (HPMCAS-HF) polymers for solubility enhancement as well as enhanced physicochemical stability of the produced amorphous solid dispersions. This was accomplished by converting the poorly water-soluble crystalline form of carbamazepine into a more soluble amorphous form within the polymeric blends. Carbamazepine (CBZ), a Biopharmaceutics Classification System class II active pharmaceutical ingredient (API) with multiple polymorphs, was utilized as a model drug. Hot-melt extrusion (HME) processing was used to prepare solid dispersions utilizing blends of polymers. Drug loading showed a significant effect on the dissolution rate of CBZ in all of the tested ratios of Soluplus® and HPMCAS-HF. CBZ was completely miscible in the polymeric blends of Soluplus® and HPMCAS-HF up to 40% drug loading. The extrudates were characterized by differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and dissolution studies. DSC and XRD data confirmed the formation of amorphous solid dispersions of CBZ in the polymeric blends of Soluplus® and HPMCAS-HF. Drug loading and release of CBZ was increased with Soluplus® (when used as the primary matrix polymer) when formulations contained Soluplus® with 7-21% (w/w) HPMCAS-HF. In addition, this blend of polymers was found to be physically and chemically stable at 40°C, 75% RH over 12 months without any dissolution rate changes.
Asunto(s)
Metilcelulosa/análogos & derivados , Polietilenglicoles/química , Polivinilos/química , Rastreo Diferencial de Calorimetría , Carbamazepina/química , Cromatografía Líquida de Alta Presión , Calor , Metilcelulosa/química , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría , Difracción de Rayos XRESUMEN
In the current work, we set out to develop and evaluate a gingiva disc of cellulose acetate phthalate and poloxamer F-127 for the simultaneous delivery of multiple drugs, namely minocycline, celecoxib, doxycycline hyclate, and simvastatin, to abolish infection, impede inflammation, avert collagen destruction, and promote alveolar bone regeneration, respectively. In vitro release studies revealed the sustained release profiles of the drugs for 12 h and that they were active against Staphylococcus aureus, Escherichia coli and Streptococcus mutans. The in vivo bioactivity levels of these drugs were assessed by comparing the number of colony forming units during different phases of a study on Wistar rats, and the results showed a reduction in the number of bacterial colonies with the applied formulation. A mucosal irritation study conducted on Wistar rat gingiva confirmed the non-irritancy of the optimal gingiva disc. Hence, this customized, non-invasive polymeric gingiva disc displaying a sustained release of drugs can be a useful tool to treat acute to moderate stages of periodontitis.