Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Colloids Surf B Biointerfaces ; 228: 113436, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37406463

RESUMEN

This study aimed to investigate the bioflocculation characteristics of bound extracellular polymers substances (B-EPS), which were extracted from Pseudomonas sp. XD-3. The flocculation efficiency of B-EPS achieved about 80%- 95% with an initial pH of 4-7, kaolin concentrations of 3-7 g L-1, temperature of 25-100 â„ƒ and B-EPS dosage of 9-105 mg L-1. The bioflocculation process of B-EPS conformed to pseudo-second-order kinetic mode, suggesting that the bioflocculation belonged to chemical adsorption process. Enzymatic hydrolysis experiments demonstrated that both polysaccharides and proteins were active components for bioflocculation. The polysaccharides were irregular aggregates with rough and porous surfaces and contained hydroxyl and carboxyl groups, which helped to promote bridging effect. Ribose, glucose and galactose were the main monosaccharides of polysaccharides. The molecular weight of the polysaccharides was relatively small, but the relatively loose configuration exposed more ion bridging sites, thus promoting the bioflocculation. Optimizing the ingredients of culture medium and culture time for B-EPS were effective strategies to increase the yield of flocculation active components. When the conditions were 10% of 2 g L-1 KH2PO4 + 5 g L-1 K2HPO4, 0.05% of Tween-80, citrate as carbon source and 32-48 h of culture time, both proteins and polysaccharides in B-EPS were significantly improved. This study gives an in-deep understanding on the flocculation characteristics of a novel bioflocculant from Pseudomonas sp. XD-3, which is conducive to the widespread application of bioflocculation.


Asunto(s)
Polisacáridos , Pseudomonas , Matriz Extracelular de Sustancias Poliméricas , Temperatura , Floculación , Polisorbatos
2.
Yao Xue Xue Bao ; 45(12): 1570-5, 2010 Dec.
Artículo en Zh | MEDLINE | ID: mdl-21351499

RESUMEN

Biodegradable four-arm star-shaped poly(ethylene glycol)-block-poly(L-lactic acid) copolymer (sPEG-b-PLLA), four-arm star-shaped poly(L-lactic acid) (sPLLA), linearly poly(ethylene glycol)-block-poly(L-lactic acid) copolymer (PEG-b-PLLA) and linearly poly(L-lactic acid) (PLLA) were synthesized from L-lactice acid, pentaerythritol, poly(ethylene glycol) and star-shaped poly(ethylene glycol), using the method of melt polycondensation, and the products were characterized and confirmed by 1H NMR spectroscopy, FT-IR and GPC. Four types of ibuprofen loaded microspheres based on the above four types of polymers, i.e., IBU/PLLA, IBU/sPLLA, IBU/PEG-b-PLLA, and IBU/sPEG-b-PLLA microspheres were prepared using the method of solvent evaporation, and the optimized preparation technology was obtained via orthogonal experiments, and the drug-encapsulating properties and in vitro drug-releasing properties were studied. The results showed that compared with IBU/PLLA and IBU/PEG-b-PLLA microspheres, the drug encapsulate efficiency of IBU/sPLLA and IBU/sPEG-b-PLLA microspheres were higher and the in vitro drug releasing rate slowed down, which mainly due to the faster degradation of sPLLA and sPEG-b-PLLA for the star-shaped structure and the block copolymerization of sPEG. The drug releasing curves of these three types of microspheres could be fit by first-order equation, and the releasing mechanism was non-Fickian diffusing, i.e., the synergetic effect of polymer degradation and drug diffusion.


Asunto(s)
Portadores de Fármacos , Ibuprofeno/administración & dosificación , Polímeros/química , Analgésicos no Narcóticos/administración & dosificación , Analgésicos no Narcóticos/química , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/química , Preparaciones de Acción Retardada , Ibuprofeno/química , Lactatos/química , Ácido Láctico/química , Espectroscopía de Resonancia Magnética , Microesferas , Tamaño de la Partícula , Poliésteres , Polietilenglicoles/química , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA