Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
World J Microbiol Biotechnol ; 38(7): 116, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35593964

RESUMEN

More than 695.7 million m3 of papermaking wastewater is discharged globally. It contains a mixture of complex pollutants, of which lignin is the major constituent (600-1000 mg/L) of papermaking black liquor, making it the second-largest energy-containing biomass globally and accounting for 47.4% and 59.4% of chemical oxygen demand (16,400 ± 120 mg/L) and chroma (3100 ± 22.32 mg/L) of papermaking wastewater. The complex process and dissolved pollutants are responsible for high pH, biochemical oxygen demand, chemical oxygen demand, total suspended solids, dark color, and toxicity. Papermaking wastewater has emerged as a substantial source of environmental pollution as the conventional wastewater treatment processes are high cost and seldom efficacious. This work introduces the shortcomings of the common treatment methods for papermaking wastewater and lignin, focusing on lignin biodegradation and discussing the metabolic pathways and application prospects of lignin-degrading microbial species. A comprehensive review of the existing lignin treatment methods has proposed that the reasonable amalgamation of biodegradation and various physicochemical techniques are environmentally friendly, sustainable, and economical. Lignin extraction from papermaking wastewater by technology combination is an effective approach to recover valuable organic materials and detoxify wastewater. This review focuses on recent breakthroughs and future trends in papermaking wastewater treatment and lignin removal, with special emphasis on biodegradation, recovery, and utilization of lignin, providing guidance for the mechanism exploration of lignin-degrading microorganisms and the optimization of high-value chemical production.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Análisis de la Demanda Biológica de Oxígeno , Lignina/química , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis
2.
Environ Pollut ; 322: 121230, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36754200

RESUMEN

The key to the efficient removal of pulping wastewater lies in the effective degradation of lignin at high temperature. There is thus an urgent need to seek effective eco-environmental techniques to overcome this environmental limit for lignin degradation. The soil isolate thermophilic Serratia sp. AXJ-M efficiently metabolizes lignin. Nevertheless, the underlying comprehensive molecular mechanism of lignin degradation by thermophilic AXJ-M is poorly understood. Here, strain AXJ-M showed excellent degradation ability toward diverse lignin-related aromatic compounds. Functional genome analysis and RNA-Seq disclosed several traits which in joint consideration suggest a high efficiency of AXJ-M representative to the lignin degradation and environmental adaptation. Multiomics analyses combined with GC-MS revealed seven potential lignin biodegradation pathways. DyP was predicted to be involved in the breakdown of the ß-O-4 ether bond, Cα-Cß bond and Cα oxidation of lignin by prokaryotic expression and gene knockout and complementation. Molecular docking deepens the understanding of the interaction between DyP and lignin. Toxicity assessment experiments clearly indicated that AXJ-M significantly reduced the toxicity of the metabolites. This work expands the knowledge about the degradation mechanism of thermophilic lignin-degrading bacteria, most importantly, offers a new perspective on potential applications in utilizing this strain in pulping wastewater bioremediation.


Asunto(s)
Lignina , Aguas Residuales , Lignina/química , Biodegradación Ambiental , Simulación del Acoplamiento Molecular , Redes y Vías Metabólicas , Antecedentes Genéticos
3.
J Hazard Mater ; 450: 131092, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36857821

RESUMEN

The use of thermophilic bacteria for treating paper black liquor seems to be an efficient bioremediation strategy. In our previous work, the lignin-degrading bacterium Serratia sp. AXJ-M exhibited excellent heat tolerance ability. However, the molecular mechanism of its response to heat stress is unknown. Therefore, the heat stress response of AXJ-M was investigated using morphological and analytical methods. A comparative genomics analysis revealed interesting insights into the adaptability of the genetic basis of AXJ-M to harsh environments. Moreover, TMT quantitative proteomic analysis and parallel reaction monitoring (PRM) assays revealed that proteins related to both component systems, ABC transporters, carbohydrate, and amino metabolism, energy metabolism, etc., were differentially expressed. The non-targeted metabolome analysis revealed that the metabolic pathways associated with the fatty acid and amino acid biosynthesis and metabolism, together with the TCA cycle were most significantly enriched. Furthermore, integrated omics suggested that AXJ-M made metabolic adaptations to compensate for the increased energy demand caused by adverse environmental stimuli. The dominant heat regulator HspQ mediated heat adaptation of AXJ-M at high temperatures and modulated DyP expression. To summarize, the present study sheds light on the effect of high temperature on the lignin-degrading bacterium and its tolerance and underlying regulatory mechanisms.


Asunto(s)
Proteoma , Serratia , Proteoma/metabolismo , Serratia/metabolismo , Biodegradación Ambiental , Proteómica/métodos , Lignina/metabolismo , Respuesta al Choque Térmico/genética , Metaboloma
4.
J Hazard Mater ; 421: 126811, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34388933

RESUMEN

There is an urgent requirement to treat cellulose present in papermaking black liquor since it induces severe economic wastes and causes environmental pollution. We characterized cellulase activity at different temperatures and pH to seek thermo-alkali-stable cellulase-producing bacteria, a natural consortium of Serratia sp. AXJ-M and Arthrobacter sp. AXJ-M1 was used to improve the degradation of cellulose. Notably, the enzyme activities and the degradation rate of cellulose were increased by 30%-70% and 30% after co-culture, respectively. In addition, the addition of cosubstrates increased the degradation rate of cellulose beyond 30%. The thermo-alkali-stable endoglucanase (bcsZ) gene was derived from the strain AXJ-M and was cloned and expressed. The purified bcsZ displayed the maximum activity at 70 °C and pH 9. Mn2+, Ca2+, Mg2+ and Tween-20 had beneficial effects on the enzyme activity. Structurally, bcsZ potentially catalyzed the degradation of cellulose. The co-culture with ligninolytic activities significantly decreased target the parameters (cellulose 45% and COD 95%) while using the immobilized fluidized bed reactors (FBRs). Finally, toxicological tests and antioxidant enzyme activities indicated that the co-culture had a detoxifying effect on black liquor. Our study showed that Serratia sp. AXJ-M acts synergistically with Arthrobacter sp. AXJ-M1 may be potentially useful for bioremediation for black liquor.


Asunto(s)
Arthrobacter , Celulasa , Álcalis , Arthrobacter/genética , Celulasa/genética , Celulosa , Serratia/genética
5.
Bioresour Technol ; 340: 125742, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34426239

RESUMEN

In this study, six strains belonging to Alcaligenes, Enterobacter and Bacillus were employed to enhance the composting process of biogas residues and agricultural wastes. The dynamic changes of dissolved organic matter (DOM), microbial community and functional genes in composting was monitored. It was found bioaugmentation reduced the content of lignocellulose in the compost by 27.14-66.30%, and increased the seed germination index (GI) of the compost by 37.59%. Metagenomics analysis of the composting process indicated Proteobacteria (35.38%-64.19%), Actinobacteria (11.24%-28.93%) and Bacteroidetes (3.65%-9.57%) are the dominant microorganisms during the bioaugmented composting. The abundance of genes associated with glycoside hydrolase was obviously enhanced and the antibiotic resistance genes (ARGs) was significantly reduced during the bioaugmented composting. Following nursery investigation indicated the seedling substrates composed of bioaugmented compost increased the dry weight of tomato seedlings by 1.7 times, revealing obvious large-scale application potential in the resource utilization of agricultural wastes.


Asunto(s)
Compostaje , Antibacterianos/farmacología , Biocombustibles , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Lignina , Estiércol , Suelo
6.
J Hazard Mater ; 406: 124285, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33189463

RESUMEN

There is a great need for efficiently treating papermaking black liquor because it can seriously pollute both soil and water ecosystems. In this study, the Plackett-Burman (PB) experimental design combined with response surface methodology (RSM) was used for improving the biodegradation efficiency of lignin by a new isolated thermophilic and alkali-tolerant strain Serratia sp. AXJ-M, and the results showed that a biodegradation efficiency of 70.5% was achieved under optimal culture conditions. The bacterium with ligninolytic activities significantly decreased target the parameters (color 80%, lignin 60%, phenol 95%, BOD 80% and COD 80%). The control and treated samples were analyzed by gas chromatography-mass spectrometer (GC-MS), which showed that the concentrations of a majority of low-molecular-weight compounds were decreased after biological treatment. Furthermore, toxicological, genotoxicity and phytotoxicity studies have supported the detoxification by the bacterium of black liquor. Finally, the genome sequence of the thermophilic, alkali-tolerant and lignin-degrading bacterium AXJ-M was completed, and the genetic basis of the thermophilic and alkali-resistant properties of AXJ-M was preliminarily revealed. The dyp-type peroxidase was first reported to have the potential to catalyze lignin degradation structurally. These findings suggest that Serratia sp. AXJ-M may be potentially useful for bioremediation applications for papermaking black liquor.


Asunto(s)
Álcalis , Serratia , Biodegradación Ambiental , Ecosistema , Lignina , Serratia/genética
7.
Bioresour Technol ; 321: 124462, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33285508

RESUMEN

Lignocellulosic waste has offered a cost-effective and food security-wise substrate for the generation of biofuels and value-added products. Here, whole-genome sequencing and comparative genomic analyses were performed for Serratia sp. AXJ-M. The results showed that strain AXJ-M contained a high proportion of strain-specific genes related to carbohydrate metabolism. Furthermore, the genetic basis of strain AXJ-M for efficient degradation of cellulose was identified. Cellulase activity tests revealed strong cellulose degradation ability and cellulase activities in strain AXJ-M. mRNA expression indicated that GH1, GH3 and GH8 might determine the strain's cellulose degradation ability. The SWISS-MODEL and Ramachandran Plot were used to predict and evaluate the 3D structure, respectively. High performance liquid chromatography (HPLC) and gas chromatography-mass spectrometer (GC-MS) were used to analyze the cellulose degradation products. Further research is needed to elucidate the cellulose degradation mechanism and to develop industrial applications for lignocellulosic biomass degradation and waste management.


Asunto(s)
Celulasa , Administración de Residuos , Bacterias , Biocombustibles , Biomasa , Celulasa/genética , Celulosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA