Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 9(7): e2103503, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34989175

RESUMEN

Tyrosinase-mediated melanin synthesis is an essential biological process that can protect skin from UV radiation and radical species. This work reports on in situ biosynthesis of artificial melanin in native skin using photoactivatable tyrosinase (PaTy). The I41Y mutant of Streptomyces avermitilis tyrosinase (SaTy) shows enzymatic activity comparable to that of wild-type SaTy. This Y41 is replaced with photocleavable o-nitrobenzyl tyrosine (ONBY) using the introduction of amber codon and ONBY-tRNA synthetase/tRNA pairs. The ONBY efficiently blocks the active site and tyrosinase activity is rapidly recovered by the photo-cleavage of ONBY. The activated PaTy successfully oxidizes L-tyrosine and tyramine-conjugated hyaluronic acid (HA_T) to synthesize melanin particles and hydrogel, respectively. To produce artificial melanin in living tissues, PaTy is encapsulated into lipid nanoparticles as an artificial melanosome. Using liposomes containing PaTy (PaTy_Lip), PaTy is transdermally delivered into ex vivo porcine skin and in vivo mouse skin tissues, thus achieving the in situ biosynthesis of artificial melanin for skin tissue protection under UV irradiation. The results of this study demonstrate that this biomimetic system can recapitulate the biosynthetic analogs of naturally occurring melanin. It should therefore be considered to be a promising strategy for producing protective biological molecules within living systems for tissue protection.


Asunto(s)
Melaninas , Nanopartículas , Animales , Liposomas , Ratones , Monofenol Monooxigenasa
2.
Macromol Biosci ; 21(11): e2100234, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34382323

RESUMEN

Cryogels are gel networks or scaffolds with a large porous structure; they can be tailored for injectability and for possessing a shape-memory ability. Herein, a growth factor-releasing cryogel microparticle (CMP) system is fabricated, and the therapeutic efficacy of recombinant human vascular endothelial growth factor (rhVEGF)-loaded CMP (V-CMP) for neovascularization is investigated. To prepare the cryogels, both methacrylated chitosan (Chi-MA) and methacrylated chondroitin sulfate (CS-MA) are used, and crosslinking using a radical crosslinking reaction is established. The physical, mechanical, and biological properties of the cryogels are analyzed by varying the amount of CS-MA used. The cryogels are then pulverized, and microsized CMPs are fabricated. CMPs dispersed in saline demonstrate a shear-thinning property, and can thus be extruded through a 23G needle. Additionally, V-CMP exhibit a sustained release profile of rhVEGF and enhance the in vitro proliferation of endothelial cells. Finally, neovascularization and effective tissue necrosis prevention are observed when V-CMPs are injected into a hindlimb ischemia mouse model. Thus, the injectable V-CMP system developed herein demonstrates a high potential utility in various tissue regeneration applications based on cell or growth factor delivery.


Asunto(s)
Criogeles/administración & dosificación , Factor A de Crecimiento Endotelial Vascular/administración & dosificación , Animales , Antiinfecciosos/administración & dosificación , Biopolímeros , Miembro Posterior/irrigación sanguínea , Humanos , Inyecciones Intramusculares , Isquemia/tratamiento farmacológico , Ratones , Proteínas Recombinantes/administración & dosificación
3.
Am J Sports Med ; 49(6): 1538-1550, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33764798

RESUMEN

BACKGROUND: Meniscal deficiency from meniscectomy is a common situation in clinical practices. Regeneration of the deficient meniscal portion, however, is still not feasible. PURPOSE: To develop an injectable hydrogel system consisting of fibrin (Fb) and polyethylene oxide (PEO) and to estimate its clinical potential for treating a segmental defect of the meniscus in a rabbit meniscal defect model. STUDY DESIGN: Controlled laboratory study. METHODS: The Fb/PEO hydrogel was fabricated by extruding 100 mg·mL-1 of fibrinogen solution and 2,500 U·mL-1 of thrombin solution containing 100 mg·mL-1 of PEO through a dual-syringe system. The hydrogels were characterized by rheological analysis and biodegradation tests. The meniscal defects of New Zealand White male rabbits were generated by removing 60% of the medial meniscus from the anterior side. The removed portion included the central portion. The Fb/PEO hydrogel was injected into the meniscal defect of the experimental knee through the joint space between the femoral condyle and tibial plateau at the anterior knee without a skin incision. The entire medial menisci from both knees of each rabbit were collected and photographed before placement in formalin for histological processing. Hematoxylin and eosin, safranin O, and immunohistochemical staining for type II collagen was performed. The biomechanical property of the regenerated meniscus was evaluated using a universal tensile machine. RESULTS: The Fb/PEO hydrogel was fabricated by an in situ gelation process, and the hydrogel displayed a semi-interpenetrating polymer network structure. We demonstrated that the mechanical properties of Fb-based hydrogels increased in a PEO-dependent manner. Furthermore, the addition of PEO delayed the biodegradation of the hydrogel. Our in vivo data demonstrated that, as compared with Fb hydrogel, Fb/PEO hydrogel injection into the meniscectomy model showed improved tissue regeneration. The regenerated meniscal tissue by Fb/PEO hydrogel showed enhanced tissue quality, which was supported by the histological and biomechanical properties. CONCLUSION: The Fb/PEO hydrogel had an effective tissue-regenerative ability through injection into the in vivo rabbit meniscal defect model. CLINICAL RELEVANCE: This injectable hydrogel system can promote meniscal repair and be readily utilized in clinical application.


Asunto(s)
Hidrogeles , Menisco , Animales , Fibrina , Hidrogeles/farmacología , Masculino , Meniscos Tibiales/cirugía , Menisco/cirugía , Polietilenglicoles , Conejos
4.
ACS Nano ; 14(4): 4523-4535, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32191436

RESUMEN

We herein developed an iontophoretic transdermal drug delivery system for the effective delivery of electrically mobile drug nanocarriers (DNs). Our system consists of a portable and disposable reverse electrodialysis (RED) battery that generates electric power for iontophoresis through the ionic exchange. In addition, in order to provide a drug reservoir to the RED-driven iontophoretic system, an electroconductive hydrogel composed of polypyrrole-incorporated poly(vinyl alcohol) (PYP) was used. The PYP hydrogel facilitated electron transfer from the RED battery and accelerated the mobility of electrically mobile DNs released from the PYP hydrogel. In this study, we showed that fluconazole- or rosiglitazone-loaded DNs could be functionalized with charge-inducing agents, and DNs with charge modification resulted in facilitated transdermal transport via repulsive RED-driven iontophoresis. In addition, topical application and RED-driven iontophoresis of rosiglitazone-loaded DNs resulted in an effective antiobese condition displaying decreased bodyweight, reduced glucose level, and increased conversion of white adipose tissues to brown adipose tissues in vivo. Consequently, we highlight that this transdermal drug delivery platform would be extensively utilized for delivering diverse therapeutic agents in a noninvasive way.


Asunto(s)
Iontoforesis , Polímeros , Sistemas de Liberación de Medicamentos , Hidrogeles/metabolismo , Polímeros/metabolismo , Pirroles , Piel/metabolismo , Absorción Cutánea
5.
Int J Biol Macromol ; 110: 479-487, 2018 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-29229249

RESUMEN

Meniscus tissues have limited regenerative capacity once damaged. The treatment options for the meniscus tissue regeneration have been limited to arthroscopic meniscectomy or surgical interventions. The injectable hydrogels based system would provide an alternative to the conventional meniscus therapy by providing a minimally invasive treatment alternative. Here we utilized enzyme-based approaches to fabricate tissue adhesive hydrogels for meniscus repair. Tyramine (TA) conjugated hyaluronic acid (TA-HA) and gelatin are susceptible to tyrosinase (TYR)-mediated crosslinking in vitro and in vivo. Importantly, mechanical properties and degradation kinetics are modulated by the TA substitution and TYR concentrations. In addition, TYR -mediated crosslinking displayed tissue-adhesive properties. Furthermore, fibrochondrocyte-laden and TYR-crosslinked hydrogels demonstrated strong biocompatibility and resulted in enhancement of cartilage-specific gene expression and matrix synthesis. Overall, this represents a potential application of enzyme-mediated crosslinking hydrogels for meniscus tissue engineering.


Asunto(s)
Hidrogeles , Menisco , Adhesivos Tisulares , Animales , Ácido Hialurónico/química , Ácido Hialurónico/farmacocinética , Ácido Hialurónico/farmacología , Hidrogeles/química , Hidrogeles/farmacocinética , Hidrogeles/farmacología , Menisco/metabolismo , Menisco/cirugía , Conejos , Adhesivos Tisulares/química , Adhesivos Tisulares/farmacología , Tiramina/química , Tiramina/farmacocinética , Tiramina/farmacología
6.
Adv Healthc Mater ; 6(5)2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27995759

RESUMEN

In this study, a hydrogel functionalized Janus membrane is developed and its capacity is examined as a wound dressing biomaterial. A hydrophobic fluoropolymer, poly(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl methacrylate) (PHFDMA), is uniformly coated onto macroporous polyester membrane through initiated chemical vapor deposition process on both sides. PHFDMA-coated macroporous membrane exhibits antibacterial property, allows air permeation, and inhibits water penetration. Janus membrane property is obtained by exposing one side of PHFDMA coated membrane with 1 m KOH solution, which allows PHFDMA cleavage resulting in carboxylic acid residue. This carboxylic acid residue is then further functionalized with gelatin methacrylate-based photocrosslinkable hydrogel for moisture retention and growth factor release. When applied to full thickness dorsal skin defect model, functionalized hydrogel allows moisture retention and hydrophobic surface prevents exudate leaks via water repellence. Furthermore, hydrogel functionalized Janus membrane enhances the wound healing rate and induces thick epidermal layer formation. In conclusion, the multifunctional Janus membrane with hydrophobic outer surface and immobilized hydrogel on the other surface is fabricated for an innovative strategy for wound healing.


Asunto(s)
Hidrogeles/química , Membranas Artificiales , Piel/lesiones , Cicatrización de Heridas , Animales , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Células 3T3 NIH , Piel/metabolismo , Piel/patología
7.
Mater Sci Eng C Mater Biol Appl ; 62: 678-85, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26952472

RESUMEN

This study proposes an innovative way of synthesizing porous gelatin/silica bioglass composite microspheres with a nanofibrous structure using emulsion coupled with thermally induced phase separation (TIPS). In particular, a mixture of the solvent (water) and non-solvent (ethanol) was used to induce a unique phase separation of gelatin/silica mixtures (i.e. gelatin/silica hybrid-rich and liquid-rich phases) at -70 °C for the creation of a nanofibrous structure. All the composite microspheres synthesized with silica contents of 10 wt.%, 15 wt.%, and 20 wt.% had well-defined spherical shapes between 124 and 136 µm in size. In addition, they were comprised of nanofibrous gelatin/silica composite walls (several tens of nanometers in thickness), where the sol-gel derived silica bioglass phase was uniformly distributed throughout the gelatin matrix. The in vitro apatite-forming ability and biocompatibility of the nanofibrous gelatin/silica bioglass composite microspheres was significantly enhanced with an increase in silica content, demonstrating their great potential for the promotion of bone tissue regeneration.


Asunto(s)
Cerámica/química , Gelatina/química , Microesferas , Nanofibras/química , Dióxido de Silicio/química , Animales , Apatitas/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Emulsiones/química , Microscopía Electrónica de Rastreo , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA