RESUMEN
Microplastic (MP) is yet another form of chronic anthropogenic contribution to the environment. MPs are plastic particles (<5 mm) that have been widely found in the most diverse natural environments, but their real impacts on ecosystems are still under investigation. Here, we studied the toxicity of naturally aged secondary polypropylene (PP) MPs after constant exposure to ultraviolet radiation (26 µm) to the third instar larvae of Chironomus sancticaroli, a dipteran species. The concentrations tested were 13.5; 67.5; and 135 items g-1 of dry sediment. C. sancticaroli organisms were investigated for fragment ingestion, mortality and changes in enzymatic biomarkers after 144 h of exposure. The organisms were able to ingest MPs from the first 48 h, and the amount of items internalized was dose-dependent and time-dependent. Overall, the results show that mortality was low, being significant at the lowest and highest concentrations (13.5 and 135 items g-1). Regarding changes in biochemical markers, after 144 h MDA and CAT activities were both significantly altered (increased and reduced, respectively), while SOD and GST levels were unchanged. In the present study, naturally aged polypropylene MPs induced biochemical toxicity in C. sancticaroli larvae, with toxicity being higher according to exposure time and particle concentration.
Asunto(s)
Chironomidae , Contaminantes Químicos del Agua , Animales , Microplásticos , Plásticos/toxicidad , Polipropilenos/toxicidad , Chironomidae/fisiología , Ecosistema , Rayos Ultravioleta , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , LarvaRESUMEN
The present study analyzed the presence of microplastics (MPs) in the shrimp Macrobrachium amazonicum, which is an economically important food that is consumed in several regions of the Brazilian Amazon. A total of 600 specimens of M. amazonicum were captured at two sampling sites (urban and rural area). A total of 2597 MP particles were recorded in the shrimps, with a significant difference between the two sites. The presence of MPs in the body parts also differed significantly. No significant difference was found between MPs abundance and sex of the shrimps. The size of the MPs did not differ significantly between the collection sites and between the body parts. Dark blue fiber-type MPs were the most abundant. A positive correlation was observed between the abundance of MPs and the total weight of shrimps. Raman spectroscopy identified the dark blue fibers as polypropylene and the FTIR technique identified the light blue fragments as nylon. The results indicate that the presence of MPs in the M. amazonicum shrimp is associated with the capture sites near the urban area and is present in the diet of the Amazonian population that regularly consumes this crustacean in traditional dishes.
Asunto(s)
Palaemonidae , Animales , Brasil , Plásticos , Microplásticos , Monitoreo del Ambiente , Alimentos Marinos , Agua DulceRESUMEN
Importance: Microplastic (MP) pollution is an emerging environmental and health concern. While MPs have been detected in various human tissues, their presence in the human brain has not been documented, raising important questions about potential neurotoxic effects and the mechanisms by which MPs might reach brain tissues. Objective: To determine the presence of MPs in the human olfactory bulb and to analyze their characteristics such as size, morphology, color, and polymeric composition. Design, Setting, and Participants: This case series study used a cross-sectional design involving the analysis of olfactory bulb tissues obtained from deceased individuals during routine coroner autopsies. The sampling procedures were conducted at São Paulo City Death Verification Service, with laboratory analysis carried out at the Brazilian Synchrotron Light Laboratory (LNLS). Participants included 15 adult individuals who had been residents of São Paulo for more than 5 years and underwent coroner autopsies. Exclusion criteria included previous neurosurgical interventions. Data analysis was performed in April 2024. Exposure: The primary exposure assessed was the presence of MPs in the olfactory bulb, analyzed through direct tissue examination and digested tissue filtration followed by micro-Fourier transform infrared spectroscopy. Main Outcomes and Measures: The main outcomes were the identification and characterization of MPs within the olfactory bulb, including their size, morphology, color, and polymeric composition. Results: The median age of the 15 deceased individuals was 69.5 years, ranging from 33 to 100 years, with 12 males and 3 females. MPs were detected in the olfactory bulbs of 8 out of 15 individuals. A total of 16 synthetic polymer particles and fibers were identified, with 75% being particles and 25% being fibers. The most common polymer detected was polypropylene (43.8%). Sizes of MPs ranged from 5.5 µm to 26.4 µm for particles, and the mean fiber length was 21.4 µm. Polymeric materials were absent in procedural blank and negative control filters, indicating minimal contamination risk. Conclusions and Relevance: This case series provides evidence of MPs found in the human olfactory bulb, suggesting a potential pathway for the translocation of MPs to the brain. The findings underscore the need for further research on the health implications of MP exposure, particularly concerning neurotoxicity and the potential for MPs to bypass the blood-brain barrier.
Asunto(s)
Microplásticos , Bulbo Olfatorio , Humanos , Masculino , Femenino , Estudios Transversales , Persona de Mediana Edad , Adulto , Microplásticos/análisis , Brasil , Anciano , Anciano de 80 o más Años , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisisRESUMEN
This study evaluated the presence of plastics and microplastics in macrophytes in an urbanized sector of the Amazon River. A total of 77 quadrats in 23 macrophyte banks were sampled during the dry (September 2020) and rainy (June 2021) season. Five species were identified: Paspalum repens, Pontederia rotundifolia, Pistia stratiotes, Salvinia auriculata and Limnobium laevigatum, with P. repens being dominant during the dry season (47.54%) and P. rotundifolia during the rainy season (78.96%). Most of the plastic particles accumulated in Paspalum repens (49.3%) and P. rotundifolia (32.4%), likely due to their morphological structure and volume. The dry season showed a higher accumulation of plastic particles than the rainy season. Microplastics were found in most samples, during both the dry (75.98%) and rainy seasons (74.03%). The upstream macrophyte banks retained more plastic particles compared to the downstream banks. A moderate positive correlation was observed between the presence of plastic particles and macrophyte biomass, and a weak positive correlation between the occurrence of microplastics and mesoplastics. White and blue fragments, ranging from 1 to 5 mm were the most common microplastics found in the macrophyte banks. Green fragments and green and blue fibers were identified as polypropylene, blue and red fragments as polyethylene, and white fragments as polystyrene. Therefore, the results of this study highlight the first evidence of the retention of plastic particles in macrophytes of the Amazon and highlight a significant risk due to the harmful effects that this type of plastic can cause to the fauna and flora of aquatic ecosystems.
Asunto(s)
Monitoreo del Ambiente , Plásticos , Ríos , Brasil , Ríos/química , Contaminantes Químicos del Agua/análisis , Microplásticos/análisis , Estaciones del AñoRESUMEN
The widespread presence of marine microplastics (< 5 mm) is a significant concern, as it may harm marine biodiversity and ocean ecosystems. Corals' capacity to ingest microplastics has emerged as a significant threat to reef ecosystems, owing to the detrimental physiological and ecological effects it can trigger. The extent of the impact of microplastics on Brazilian corals remains unclear and this study aimed to investigate its distribution and characteristics in four coral species: Favia gravida, Mussismilia hispida, Montastrea cavernosa, and Siderastrea stellata, found in the Trindade and Martim Vaz Islands - the most isolated archipelago of Brazil, located about 1200 km (680 miles) east of the coast. This study aims to reveal the extent of microplastic distribution in the coral reef environment, assess the amount of microplastics in different coral species, and compare each species' capacity to adhere and accumulate microplastics. A high concentration of ingested and adhered microplastics was detected in all coral species evaluated in the present study. No significant differences were observed in the sampling points which indicates that although the sampling points are located at different distances from the coast, the microplastic pollution is equally distributed in the region. Polyethylene (PE), polyvinyl chloride (PVC), polypropylene (PP), poly(methyl methacrylate) (PMMA), Rayon, and Nylon particles were detected, with a predominance of PE (45.5 %). No significant differences in microplastic concentration were detected among the various species and locations studied. Our research presents findings that demonstrate the extensive occurrence of microplastic contamination in coral colonies located on remote islands.
Asunto(s)
Antozoos , Contaminantes Químicos del Agua , Animales , Arrecifes de Coral , Microplásticos , Plásticos , Ecosistema , Antozoos/fisiología , Islas del Atlántico , Polietileno , Contaminantes Químicos del Agua/análisisRESUMEN
Microplastics are widespread pollutants in the environment and are considered a global pollution problem. Microplastics mostly originate from larger plastics and due to environmental conditions are undergoing constant fragmentation processes. It is important to understand the fragmentation pathways, since they play a key role in the fate of the particles, and also directly influence toxicity. Amphipods are potential inducers of plastic debris fragmentation. Here, Hyalella azteca was exposed to different concentrations (540, 2700, 5400 items/L) of 24.5 µm polystyrene microplastics (PS-MP) for 7 days. After exposure, oxidative stress, particle size reduction, and mortality were checked. No significant mortality was seen in any of the treatments, although changes were recorded in all enzymatic biomarkers analyzed. It was observed that throughout the ingestion and egestion of PS-MP by H. azteca, particles underwent intense fragmentation, presenting a final size up to 25.3% smaller than the initial size. The fragmentation over time (24, 72, 120, 168 h) was verified and the results showed a constant reduction in average particle size indicating that H. azteca are able to induce PS-MP fragmentation. This process may facilitate bioaccumulation and trophic particle transfer.
Asunto(s)
Anfípodos , Contaminantes Químicos del Agua , Animales , Microplásticos/metabolismo , Plásticos/toxicidad , Anfípodos/metabolismo , Contaminantes Químicos del Agua/toxicidad , Poliestirenos/metabolismoRESUMEN
Microplastics (MPs) have been reported in the outdoor/indoor air of urban centres, raising health concerns due to the potential for human exposure. Since aerosols are considered one of the routes of Coronavirus disease 2019 (COVID-19) transmission and may bind to the surface of airborne MPs, we hypothesize that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could be associated with the levels of MPs in the air. Our goal was to quantify the SARS-CoV-2 RNA and MPs present in the total suspended particles (TSP) collected in the area surrounding the largest medical centre in Latin America and to elucidate a possible association among weather variables, MPs, and SARS-CoV-2 in the air. TSP were sampled from three outdoor locations in the areas surrounding a medical centre. MPs were quantified and measured under a fluorescence microscope, and their polymeric composition was characterized by Fourier transform infrared (FT-IR) microspectroscopy coupled with attenuated total reflectance (ATR). The viral load of SARS-CoV-2 was quantified by an in-house real-time PCR assay. A generalized linear model (GzLM) was employed to evaluate the effect of the SARS-CoV-2 quantification on MPs and weather variables. TSP samples tested positive for SARS-CoV-2 in 22 out of 38 samples at the three sites. Polyester was the most frequent polymer (80%) found in the samples. The total amount of MPs was positively associated with the quantification of SARS-CoV-2 envelope genes and negatively associated with weather variables (temperature and relative humidity). Our findings show that SARS-CoV-2 aerosols may bind to TSP, such as MPs, and facilitate virus entry into the human body.
Asunto(s)
COVID-19 , SARS-CoV-2 , Aerosoles , Humanos , América Latina , Microplásticos , Plásticos , ARN Viral , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
Plastics are ubiquitously used by societies, but most of the plastic waste is deposited in landfills and in the natural environment. Their degradation into submillimetre fragments, called microplastics, is a growing concern due to potential adverse effects on the environment and human health. Microplastics are present in the air and may be inhaled by humans, but whether they have deleterious effects on the respiratory system remain unknown. In this study, we determined the presence of microplastics in human lung tissues obtained at autopsies. Polymeric particles (n = 33) and fibres (n = 4) were observed in 13 of 20 tissue samples. All polymeric particles were smaller than 5.5 µm in size, and fibres ranged from 8.12 to 16.8 µm. The most frequently determined polymers were polyethylene and polypropylene. Deleterious health outcomes may be related to the heterogeneous characteristics of these contaminants in the respiratory system following inhalation.
Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Humanos , Pulmón , Plásticos , Instalaciones de Eliminación de Residuos , Contaminantes Químicos del Agua/análisisRESUMEN
Antarctic pristine environment is threatened by the presence of microplastics that occur in a variety of shapes and sizes, from fibers to irregular fragments. The aim of this study is to assess the abundance, distribution, and the characterization of the microfibers in zooplankton samples found in ocean waters in Admiralty Bay, Antarctica. The samples were collected at five points in Admiralty Bay during the XXIX Brazilian Antarctic Expedition in the austral summer of 2010-2011. A total of 603 microfibers were collected in 60 samples, with an average abundance of 2.40 (± 4.57) microfibers 100 m-3. Microfiber size ranging from ca. 10 to 22 µm in diameter of various lengths and colors (blue, red, black, and clear) was collected and characterized by scanning electron microscopy (SEM) and Raman spectroscopy. Most of these microfibers were entangled in various different zooplankton species and were identified as polymers composed mostly by polyethyleneglycols, polyurethanes, polyethylene terephthalates, and polyamides. The presence of such microfibers may cause the loss of biodiversity in the Antarctic continent, and the results presented herein can contribute to a better understanding of the impact caused by them within the food chain and human health. Graphical Abstract á .