Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Parasitol Res ; 120(1): 321-335, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33191446

RESUMEN

Treatment for visceral leishmaniasis (VL) is hampered mainly by drug toxicity, their high cost, and parasite resistance. Drug development is a long and pricey process, and therefore, drug repositioning may be an alternative worth pursuing. Cardenolides are used to treat cardiac diseases, especially those obtained from Digitalis species. In the present study, cardenolide digitoxigenin (DIGI) obtained from a methanolic extract of Digitalis lanata leaves was tested for its antileishmanial activity against Leishmania infantum species. Results showed that 50% Leishmania and murine macrophage inhibitory concentrations (IC50 and CC50, respectively) were of 6.9 ± 1.5 and 295.3 ± 14.5 µg/mL, respectively. With amphotericin B (AmpB) deoxycholate, used as a control drug, values of 0.13 ± 0.02 and 0.79 ± 0.12 µg/mL, respectively, were observed. Selectivity index (SI) values were of 42.8 and 6.1 for DIGI and AmpB, respectively. Preliminary studies suggested that the mechanism of action for DIGI is to cause alterations in the mitochondrial membrane potential, to increase the levels of reactive oxygen species and induce accumulation of lipid bodies in the parasites. DIGI was incorporated into Pluronic® F127-based polymeric micelles, and the formula (DIGI/Mic) was used to treat L. infantum-infected mice. Miltefosine was used as a control drug. Results showed that animals treated with either miltefosine, DIGI, or DIGI/Mic presented significant reductions in the parasite load in their spleens, livers, bone marrows, and draining lymph nodes, as well as the development of a specific Th1-type response, when compared with the controls. Results obtained 1 day after treatment were corroborated with data corresponding to 15 days after therapy. Importantly, treatment with DIGI/Mic induced better parasitological and immunological responses when compared with miltefosine- and DIGI-treated mice. In conclusion, DIGI/Mic has the potential to be used as a therapeutic agent to protect against L. infantum infection, and it is therefore worth of consideration in future studies addressing VL treatment.


Asunto(s)
Antiprotozoarios/uso terapéutico , Digitoxigenina/uso terapéutico , Reposicionamiento de Medicamentos/métodos , Leishmania infantum/efectos de los fármacos , Leishmaniasis Visceral/tratamiento farmacológico , Poloxámero/uso terapéutico , Anfotericina B/uso terapéutico , Animales , Ácido Desoxicólico/uso terapéutico , Combinación de Medicamentos , Femenino , Hígado/parasitología , Macrófagos/efectos de los fármacos , Macrófagos/parasitología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Micelas , Carga de Parásitos , Especies Reactivas de Oxígeno , Bazo/parasitología
2.
Parasitol Int ; 68(1): 63-72, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30339837

RESUMEN

Clioquinol (5-chloro-7-iodoquinolin-8-ol or ICHQ) was recently showed to presents an in vitro effective antileishmanial action, causing changes in membrane permeability, mitochondrial functionality, and parasite morphology. In the present study, ICHQ was incorporated into a Poloxamer 407-based polymeric micelles system (ICHQ/M), and its antileishmanial activity was in vivo evaluated in L. amazonensis-infected BALB/c mice. Amphotericin B (AmpB) and its liposomal formulation (Ambisome®) were used as controls. Parasitological and immunological evaluations were performed 30 days after the treatment. Results indicated more significant reductions in the average lesion diameter and parasite burden in ICHQ or ICHQ/M-treated mice, which were associated with the development of a polarized Th1 immune response, based on production of high levels of IFN-γ, IL-12, TNF-α, GM-CSF, and antileishmanial IgG2a antibody. Control groups´ mice produced high levels of IL-4, IL-10, and IgG1 isotype antibody. No organic toxicity was found by using ICHQ or ICHQ/M to treat the animals, although those receiving AmpB and Ambisome® have presented higher levels of renal and hepatic damage markers. In conclusion, results suggested that the ICHQ/M composition can be considered as an antileishmanial candidate to be tested against human leishmaniasis.


Asunto(s)
Antiprotozoarios/inmunología , Antiprotozoarios/uso terapéutico , Clioquinol/inmunología , Clioquinol/uso terapéutico , Leishmania mexicana/efectos de los fármacos , Leishmaniasis Visceral/tratamiento farmacológico , Poloxámero/administración & dosificación , Anfotericina B/administración & dosificación , Anfotericina B/uso terapéutico , Anfotericina B/toxicidad , Animales , Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos/administración & dosificación , Antígenos de Protozoos/inmunología , Antígenos de Protozoos/uso terapéutico , Antiprotozoarios/administración & dosificación , Antiprotozoarios/toxicidad , Clioquinol/administración & dosificación , Citocinas/biosíntesis , Citocinas/inmunología , Sistemas de Liberación de Medicamentos/métodos , Humanos , Inmunoglobulina G/sangre , Interferón gamma/biosíntesis , Interferón gamma/inmunología , Leishmania mexicana/crecimiento & desarrollo , Leishmaniasis Visceral/inmunología , Ratones , Ratones Endogámicos BALB C , Micelas , Carga de Parásitos , Poloxámero/química , Células TH1
3.
Biomed Pharmacother ; 109: 779-787, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30551531

RESUMEN

New therapeutic strategies against leishmaniasis are desirable, since the treatment against disease presents problems, such as the toxicity, high cost and/or parasite resistance. As consequence, new antileishmanial compounds are necessary to be identified, as presenting high activity against Leishmania parasites, but low toxicity in mammalian hosts. Flau-A is a naphthoquinone derivative recently showed to presents an in vitro effective action against Leishmania amazonensis and L. infantum species. In the present work, the in vivo efficacy of Flau-A, which was incorporated into a Poloxamer 407-based micelle system, was evaluated in a murine model against L. amazonensis infection. Amphotericin B (AmB) and Ambisome® were used as controls. The animals were infected and later treated with the compounds. Thirty days after the treatment, parasitological and immunological parameters were evaluated. Results showed that AmB, Ambisome®, Flau-A or Flau-A/M-treated animals presented significantly lower average lesion diameter and parasite burden in tissue and organs evaluated, when compared to the control (saline and micelle) groups. Flau-A or Flau-A/M-treated mice were those presenting the most significant reductions in the parasite burden, when compared to the others. These animals developed also a more polarized antileishmanial Th1 immune response, which was based on significantly higher levels of IFN-γ, IL-12, TNF-α, GM-CSF, and parasite-specific IgG2a isotype; associated with low levels of IL-4, IL-10, and IgG1 antibody. The absence of toxicity was found in these animals, although mice receiving AmB have showed high levels of renal and hepatic damage markers. In conclusion, results suggested that the Flau-A/M compound may be considered as a possible therapeutic target to be evaluated against human leishmaniasis.


Asunto(s)
Antiprotozoarios/uso terapéutico , Leishmania/efectos de los fármacos , Leishmaniasis/tratamiento farmacológico , Micelas , Naftoquinonas/uso terapéutico , Poloxámero/uso terapéutico , Animales , Antiprotozoarios/química , Antiprotozoarios/farmacocinética , Excipientes/química , Excipientes/farmacocinética , Excipientes/uso terapéutico , Femenino , Leishmania/metabolismo , Leishmaniasis/metabolismo , Ratones , Ratones Endogámicos BALB C , Naftoquinonas/química , Naftoquinonas/farmacocinética , Poloxámero/química , Poloxámero/farmacocinética , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA