Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35046019

RESUMEN

The use of biologics in the treatment of numerous diseases has increased steadily over the past decade due to their high specificities, low toxicity, and limited side effects. Despite this success, peptide- and protein-based drugs are limited by short half-lives and immunogenicity. To address these challenges, we use a genomically recoded organism to produce genetically encoded elastin-like polypeptide-protein fusions containing multiple instances of para-azidophenylalanine (pAzF). Precise lipidation of these pAzF residues generated a set of sequence-defined synthetic biopolymers with programmable binding affinity to albumin without ablating the activity of model fusion proteins, and with tunable blood serum half-lives spanning 5 to 94% of albumin's half-life in a mouse model. Our findings present a proof of concept for the use of genetically encoded bioorthogonal conjugation sites for multisite lipidation to tune protein stability in mouse serum. This work establishes a programmable approach to extend and tune the half-life of protein or peptide therapeutics and a technical foundation to produce functionalized biopolymers endowed with programmable chemical and biophysical properties with broad applications in medicine, materials science, and biotechnology.


Asunto(s)
Biopolímeros/química , Lípidos/química , Péptidos/química , Proteínas/química , Aminoácidos , Animales , Semivida , Ratones , Ingeniería de Proteínas/métodos , Biología Sintética/métodos
2.
Cell Chem Biol ; 29(6): 1046-1052.e4, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34965380

RESUMEN

The site-specific incorporation of nonstandard amino acids (nsAAs) during translation has expanded the chemistry and function of proteins. The nsAA para-azido-phenylalanine (pAzF) encodes a biorthogonal chemical moiety that facilitates "click" reactions to attach diverse chemical groups for protein functionalization. However, the azide moiety is unstable in physiological conditions and is reduced to para-amino-phenylalanine (pAF). Azide reduction decreases the yield of pAzF residues in proteins to 50%-60% per azide and limits protein functionalization by click reactions. Here, we describe the use of a pH-tunable diazotransfer reaction that converts pAF to pAzF at >95% efficiency in proteins. The method selectively restores pAzF at multiple sites per protein without introducing off-target modifications. This work addresses a key limitation in the production of pAzF-containing proteins by restoring azides for multi-site functionalization with diverse chemical moieties, setting the stage for the production of genetically encoded biomaterials with broad applications in biotherapeutics, materials science, and biotechnology.


Asunto(s)
Azidas , Fenilalanina , Aminoácidos , Azidas/química , Materiales Biocompatibles , Química Clic/métodos , Fenilalanina/química , Proteínas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA