Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Rev Med Virol ; 29(5): e2073, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31369184

RESUMEN

Enterovirus A71 (EV-A71) from the Picornaviridae family is an important emerging pathogen causing hand, foot, and mouth disease (HFMD) outbreaks worldwide. EV-A71 also caused fatal neurological complications in young children especially in Asia. On the basis of seroepidemiological studies from many Asian countries, EV-A71 infection is very common. Children of very young age are particularly vulnerable. Large-scale epidemics that occur every 3 to 4 years are associated with accumulation of an immunologically naive younger population. Capsid proteins especially VP1 with the presence of major B- and T-cell epitopes are the most antigenic proteins. The nonstructural proteins mainly contribute to T-cell epitopes that induce cross-reactive immune responses against other enteroviruses. Dominant epitopes and their neutralization magnitudes differ in mice, rabbits, and humans. Neutralizing antibody is sufficient for immune protection, but poorer cellular immunity may lead to severe neurological complications and deaths. Some chemokines/cytokines are consistently found in severely ill patients, for example, IL-6, IL-10, IL-17A, MCP-1, IL-8, MIG, IP-10, IFN-γ, and G-CSF. An increase in white cell counts is a risk factor for severe HFMD. Recent clinical trials on EV-A71 inactivated vaccine showed >90% efficacy and a robust neutralization response that was protective, indicating neutralizing antibody correlates for protection. No protection against other enteroviruses was observed. A comprehensive understanding of the immune responses to EV-A71 infection will benefit the development of diagnostic tools, potential therapeutics, and subunit vaccine candidates. Future development of a multivalent enterovirus vaccine will require knowledge of correlates of protection, understanding of cross-protection and memory T-cell responses among enteroviruses.


Asunto(s)
Enterovirus Humano A/inmunología , Infecciones por Enterovirus/inmunología , Infecciones por Enterovirus/virología , Interacciones Huésped-Patógeno/inmunología , Inmunidad , Animales , Enterovirus Humano A/fisiología , Infecciones por Enterovirus/epidemiología , Infecciones por Enterovirus/prevención & control , Humanos , Estudios Seroepidemiológicos , Vacunas Virales/inmunología
2.
J Clin Virol ; 108: 43-49, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30237097

RESUMEN

BACKGROUND: Coxsackievirus A6 (CV-A6) represents the predominant enterovirus serotype in Hong Kong, but its epidemiology in our population was unknown. OBJECTIVES: To examine the clinical and molecular epidemiology of CV-A6 and detect emerging recombinant strains in Hong Kong. STUDY DESIGN: Nasopharyngeal aspirates (NPAs) from patients with febrile or respiratory illness were subject to RT-PCR for CV-A6 and sequencing of 5'-NCR and VP1. CV-A6-positive samples were further subject to 2C and 3D gene sequencing. Complete genome sequencing was performed on potential recombinant strains. RESULTS: Thirty-six (0.35%) NPAs were positive for CV-A6 by 5'-NCR RT-PCR and sequencing, 28 of which confirmed by partial VP1 gene sequencing. Among the 28 patients (mainly young children) with CV-A6 infection, hand-foot-and-mouth disease (HFMD) (43%), herpangina (18%) and tonsillitis (11%) were the most common diagnoses. Seven (25%) patients had neurological manifestations, including febrile seizures, encephalitis and meningitis. VP1 gene analysis showed that 24 CV-A6 strains circulating in Hong Kong belonged to genotype D5, while 4 strains belonged to D4. Further 2C and 3D gene analysis revealed eight potential recombinant strains. Genome sequencing of five selected strains confirmed four recombinant strains: HK459455/2013 belonging to recombination group RJ arisen from CV-A6/CV-A4, HK458288/2015 and HK446377/2015 representing novel group RL arisen from CV-A6/CV-A4, and HK462069/2015 representing novel group RM arisen from CV-A6/EV-A71. Recombination breakpoints located at 3D were identified in the latter three recombinant strains, with HK462069/2015 (from a child with encephalitis) having acquired 3D region from EV-A71. CONCLUSIONS: We identified novel recombinant CV-A6 strains in Hong Kong, with 3D being a common recombination site.


Asunto(s)
Enterovirus Humano B/aislamiento & purificación , Enfermedad de Boca, Mano y Pie/complicaciones , Enfermedad de Boca, Mano y Pie/epidemiología , Enfermedades del Sistema Nervioso/epidemiología , Enfermedades del Sistema Nervioso/virología , Adulto , Antígenos Virales/genética , Proteínas de la Cápside/genética , Proteínas Portadoras/genética , Niño , Preescolar , Enterovirus Humano B/genética , Femenino , Genoma Viral , Genotipo , Enfermedad de Boca, Mano y Pie/diagnóstico , Hong Kong/epidemiología , Humanos , Lactante , Recién Nacido , Masculino , Nasofaringe/virología , Filogenia , ARN Viral/genética , Virus Reordenados/genética , Virus Reordenados/aislamiento & purificación , Análisis de Secuencia de ADN , Proteínas no Estructurales Virales/genética
3.
PLoS One ; 11(11): e0165659, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27806091

RESUMEN

Enterovirus A71 (EV-A71) is one of the main causative agents of hand, foot and mouth disease (HFMD). Unlike other enteroviruses that cause HFMD, EV-A71 is more frequently associated with severe neurological complications and fatality. To date, no effective licensed antivirals are available to combat EV-A71 infection. Little is known about the immunogenicity of viral non-structural proteins in humans. Previous studies have mainly focused on characterization of epitopes of EV-A71 structural proteins by using immunized animal antisera. In this study, we have characterized human antibody responses against the structural and non-structural proteins of EV-A71. Each viral protein was cloned and expressed in either bacterial or mammalian systems, and tested with antisera by western blot. Results revealed that all structural proteins (VP1-4), and non-structural proteins 2A, 3C and 3D were targets of EV-A71 IgM, whereas EV-A71 IgG recognized all the structural and non-structural proteins. Sixty three synthetic peptides predicted to be immunogenic in silico were synthesized and used for the characterization of EV-A71 linear B-cell epitopes. In total, we identified 22 IgM and four IgG dominant epitopes. Synthetic peptide PEP27, corresponding to residues 142-156 of VP1, was identified as the EV-A71 IgM-specific immunodominant epitope. PEP23, mapped to VP1 41-55, was recognized as the EV-A71 IgG cross-reactive immunodominant epitope. The structural protein VP1 is the major immunodominant site targeted by anti-EV-A71 IgM and IgG antibodies, but epitopes against non-structural proteins were also detected. These data provide new understanding of the immune response to EV-A71 infection, which benefits the development of diagnostic tools, potential therapeutics and subunit vaccine candidates.


Asunto(s)
Enterovirus Humano A/inmunología , Enfermedad de Boca, Mano y Pie/inmunología , Epítopos Inmunodominantes/inmunología , Proteínas no Estructurales Virales/inmunología , Línea Celular , Clonación Molecular , Células HEK293 , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina M/inmunología , Péptidos/síntesis química , Péptidos/química , Péptidos/inmunología , Proteínas no Estructurales Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA