Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Peripher Nerv Syst ; 29(2): 202-212, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581130

RESUMEN

BACKGROUND: Caused by duplications of the gene encoding peripheral myelin protein 22 (PMP22), Charcot-Marie-Tooth disease type 1A (CMT1A) is the most common hereditary neuropathy. Despite this shared genetic origin, there is considerable variability in clinical severity. It is hypothesized that genetic modifiers contribute to this heterogeneity, the identification of which may reveal novel therapeutic targets. In this study, we present a comprehensive analysis of clinical examination results from 1564 CMT1A patients sourced from a prospective natural history study conducted by the RDCRN-INC (Inherited Neuropathy Consortium). Our primary objective is to delineate extreme phenotype profiles (mild and severe) within this patient cohort, thereby enhancing our ability to detect genetic modifiers with large effects. METHODS: We have conducted large-scale statistical analyses of the RDCRN-INC database to characterize CMT1A severity across multiple metrics. RESULTS: We defined patients below the 10th (mild) and above the 90th (severe) percentiles of age-normalized disease severity based on the CMT Examination Score V2 and foot dorsiflexion strength (MRC scale). Based on extreme phenotype categories, we defined a statistically justified recruitment strategy, which we propose to use in future modifier studies. INTERPRETATION: Leveraging whole genome sequencing with base pair resolution, a future genetic modifier evaluation will include single nucleotide association, gene burden tests, and structural variant analysis. The present work not only provides insight into the severity and course of CMT1A, but also elucidates the statistical foundation and practical considerations for a cost-efficient and straightforward patient enrollment strategy that we intend to conduct on additional patients recruited globally.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Humanos , Adulto , Masculino , Femenino , Persona de Mediana Edad , Adolescente , Adulto Joven , Índice de Severidad de la Enfermedad , Niño , Proteínas de la Mielina/genética , Selección de Paciente , Fenotipo , Anciano , Genes Modificadores , Preescolar
2.
Brain ; 146(7): 2885-2896, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36511878

RESUMEN

Charcot-Marie-Tooth disease is the most common inherited disorder of the PNS. CMT1A accounts for 40-50% of all cases and is caused by a duplication of the PMP22 gene on chromosome 17, leading to dysmyelination in the PNS. Patient-derived models to study such myelination defects are lacking as the in vitro generation of human myelinating Schwann cells has proved to be particularly challenging. Here, we present an induced pluripotent stem cell-derived organoid culture, containing various cell types of the PNS, including myelinating human Schwann cells, which mimics the human PNS. Single-cell analysis confirmed the PNS-like cellular composition and provides insight into the developmental trajectory. We used this organoid model to study disease signatures of CMT1A, revealing early ultrastructural myelin alterations, including increased myelin periodic line distance and hypermyelination of small axons. Furthermore, we observed the presence of onion-bulb-like formations in a later developmental stage. These hallmarks were not present in the CMT1A-corrected isogenic line or in a CMT2A iPSC line, supporting the notion that these alterations are specific to CMT1A. Downregulation of PMP22 expression using short-hairpin RNAs or a combinatorial drug consisting of baclofen, naltrexone hydrochloride and D-sorbitol was able to ameliorate the myelin defects in CMT1A-organoids. In summary, this self-organizing organoid model can capture biologically meaningful features of the disease and capture the physiological complexity, forms an excellent model for studying demyelinating diseases and supports the therapeutic approach of reducing PMP22 expression.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Células Madre Pluripotentes Inducidas , Humanos , Vaina de Mielina/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Regulación hacia Abajo , Proteínas de la Mielina/genética , Proteínas de la Mielina/metabolismo , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Organoides/metabolismo , Células de Schwann
3.
Am J Hum Genet ; 107(4): 763-777, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32937143

RESUMEN

Distal hereditary motor neuropathies (HMNs) and axonal Charcot-Marie-Tooth neuropathy (CMT2) are clinically and genetically heterogeneous diseases characterized primarily by motor neuron degeneration and distal weakness. The genetic cause for about half of the individuals affected by HMN/CMT2 remains unknown. Here, we report the identification of pathogenic variants in GBF1 (Golgi brefeldin A-resistant guanine nucleotide exchange factor 1) in four unrelated families with individuals affected by sporadic or dominant HMN/CMT2. Genomic sequencing analyses in seven affected individuals uncovered four distinct heterozygous GBF1 variants, two of which occurred de novo. Other known HMN/CMT2-implicated genes were excluded. Affected individuals show HMN/CMT2 with slowly progressive distal muscle weakness and musculoskeletal deformities. Electrophysiological studies confirmed axonal damage with chronic neurogenic changes. Three individuals had additional distal sensory loss. GBF1 encodes a guanine-nucleotide exchange factor that facilitates the activation of members of the ARF (ADP-ribosylation factor) family of small GTPases. GBF1 is mainly involved in the formation of coatomer protein complex (COPI) vesicles, maintenance and function of the Golgi apparatus, and mitochondria migration and positioning. We demonstrate that GBF1 is present in mouse spinal cord and muscle tissues and is particularly abundant in neuropathologically relevant sites, such as the motor neuron and the growth cone. Consistent with the described role of GBF1 in Golgi function and maintenance, we observed marked increase in Golgi fragmentation in primary fibroblasts derived from all affected individuals in this study. Our results not only reinforce the existing link between Golgi fragmentation and neurodegeneration but also demonstrate that pathogenic variants in GBF1 are associated with HMN/CMT2.


Asunto(s)
Axones/metabolismo , Enfermedad de Charcot-Marie-Tooth/genética , Factores de Intercambio de Guanina Nucleótido/genética , Debilidad Muscular/genética , Atrofia Muscular Espinal/genética , Anomalías Musculoesqueléticas/genética , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Aminoácidos , Animales , Axones/patología , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/patología , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/patología , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Expresión Génica , Aparato de Golgi/metabolismo , Aparato de Golgi/patología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Heterocigoto , Humanos , Masculino , Ratones , Persona de Mediana Edad , Mitocondrias/metabolismo , Mitocondrias/patología , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Debilidad Muscular/diagnóstico , Debilidad Muscular/metabolismo , Debilidad Muscular/patología , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Anomalías Musculoesqueléticas/diagnóstico , Anomalías Musculoesqueléticas/metabolismo , Anomalías Musculoesqueléticas/patología , Mutación , Linaje , Cultivo Primario de Células , Médula Espinal/anomalías , Médula Espinal/metabolismo
4.
J Neurol Neurosurg Psychiatry ; 93(5): 530-538, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35140138

RESUMEN

BACKGROUND AND OBJECTIVES: Charcot-Marie-Tooth disease (CMT) is the most common inherited neuropathy and often presents during childhood. Guidelines for the optimal management of common problems experienced by individuals with CMT do not exist, for either children or adults. We formed the Paediatric CMT Best Practice Guidelines Consortium to develop evidence and consensus-based recommendations for the clinical management of children and adolescents with CMT, with the primary objective of promoting optimal, standardised care globally. METHODS: Development of this clinical practice guideline involved a series of systematic reviews covering 10 clinical questions, modified Delphi methodology involving an international panel of clinicians to generate consensus where evidence did not exist, and application of the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach to evaluate the body of literature and formulate recommendations. RESULTS: The final guideline includes three evidence-based and 31 consensus-based recommendations. They encompass the management of muscle weakness, balance and mobility impairment, sensory symptoms, muscle cramps, impaired upper limb function, respiratory impairment, maintenance of joint range of motion and non-surgical management of joint deformity. Consensus was not achieved in some management areas, reflecting differences in practice between clinicians and healthcare settings, and highlighting the need for further research. CONCLUSIONS: This clinical practice guideline provides practical and implementable guidance on the management of common clinical problems experienced by children with CMT and advocates for improved access to multidisciplinary care. Successful dissemination and implementation of these recommendations will be critical in ensuring their application across multiple healthcare settings.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Adolescente , Adulto , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Enfermedad de Charcot-Marie-Tooth/terapia , Niño , Consenso , Humanos , Calambre Muscular , Debilidad Muscular , Guías de Práctica Clínica como Asunto , Revisiones Sistemáticas como Asunto
5.
Proc Natl Acad Sci U S A ; 116(39): 19440-19448, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31501329

RESUMEN

Aminoacyl-transfer RNA (tRNA) synthetases (aaRSs) are the largest protein family causatively linked to neurodegenerative Charcot-Marie-Tooth (CMT) disease. Dominant mutations cause the disease, and studies of CMT disease-causing mutant glycyl-tRNA synthetase (GlyRS) and tyrosyl-tRNA synthetase (TyrRS) showed their mutations create neomorphic structures consistent with a gain-of-function mechanism. In contrast, based on a haploid yeast model, loss of aminoacylation function was reported for CMT disease mutants in histidyl-tRNA synthetase (HisRS). However, neither that nor prior work of any CMT disease-causing aaRS investigated the aminoacylation status of tRNAs in the cellular milieu of actual patients. Using an assay that interrogated aminoacylation levels in patient cells, we investigated a HisRS-linked CMT disease family with the most severe disease phenotype. Strikingly, no difference in charged tRNA levels between normal and diseased family members was found. In confirmation, recombinant versions of 4 other HisRS CMT disease-causing mutants showed no correlation between activity loss in vitro and severity of phenotype in vivo. Indeed, a mutation having the most detrimental impact on activity was associated with a mild disease phenotype. In further work, using 3 independent biophysical analyses, structural opening (relaxation) of mutant HisRSs at the dimer interface best correlated with disease severity. In fact, the HisRS mutation in the severely afflicted patient family caused the largest degree of structural relaxation. These data suggest that HisRS-linked CMT disease arises from open conformation-induced mechanisms distinct from loss of aminoacylation.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Enfermedad de Charcot-Marie-Tooth/genética , Histidina-ARNt Ligasa/genética , Secuencia de Aminoácidos , Aminoacil-ARNt Sintetasas/metabolismo , Aminoacilación/genética , Axones , Enfermedad de Charcot-Marie-Tooth/metabolismo , Mutación con Ganancia de Función/genética , Histidina-ARNt Ligasa/metabolismo , Humanos , Mutación , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Relación Estructura-Actividad , Tirosina-ARNt Ligasa/genética , Tirosina-ARNt Ligasa/metabolismo
6.
Brain ; 143(12): 3540-3563, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33210134

RESUMEN

Hereditary motor neuropathies are clinically and genetically diverse disorders characterized by length-dependent axonal degeneration of lower motor neurons. Although currently as many as 26 causal genes are known, there is considerable missing heritability compared to other inherited neuropathies such as Charcot-Marie-Tooth disease. Intriguingly, this genetic landscape spans a discrete number of key biological processes within the peripheral nerve. Also, in terms of underlying pathophysiology, hereditary motor neuropathies show striking overlap with several other neuromuscular and neurological disorders. In this review, we provide a current overview of the genetic spectrum of hereditary motor neuropathies highlighting recent reports of novel genes and mutations or recent discoveries in the underlying disease mechanisms. In addition, we link hereditary motor neuropathies with various related disorders by addressing the main affected pathways of disease divided into five major processes: axonal transport, tRNA aminoacylation, RNA metabolism and DNA integrity, ion channels and transporters and endoplasmic reticulum.


Asunto(s)
Neuropatía Hereditaria Motora y Sensorial/genética , Ligamiento Genético , Humanos , Enfermedades Neuromusculares/genética
7.
Hum Mutat ; 39(3): 415-432, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29235198

RESUMEN

Histidyl-tRNA synthetase (HARS) ligates histidine to cognate tRNA molecules, which is required for protein translation. Mutations in HARS cause the dominant axonal peripheral neuropathy Charcot-Marie-Tooth disease type 2W (CMT2W); however, the precise molecular mechanism remains undefined. Here, we investigated three HARS missense mutations associated with CMT2W (p.Tyr330Cys, p.Ser356Asn, and p.Val155Gly). The three mutations localize to the HARS catalytic domain and failed to complement deletion of the yeast ortholog (HTS1). Enzyme kinetics, differential scanning fluorimetry (DSF), and analytical ultracentrifugation (AUC) were employed to assess the effect of these substitutions on primary aminoacylation function and overall dimeric structure. Notably, the p.Tyr330Cys, p.Ser356Asn, and p.Val155Gly HARS substitutions all led to reduced aminoacylation, providing a direct connection between CMT2W-linked HARS mutations and loss of canonical ARS function. While DSF assays revealed that only one of the variants (p.Val155Gly) was less thermally stable relative to wild-type, all three HARS mutants formed stable dimers, as measured by AUC. Our work represents the first biochemical analysis of CMT-associated HARS mutations and underscores how loss of the primary aminoacylation function can contribute to disease pathology.


Asunto(s)
Axones/patología , Histidina-ARNt Ligasa/metabolismo , Enfermedades del Sistema Nervioso Periférico/enzimología , Enfermedades del Sistema Nervioso Periférico/patología , Secuencia de Aminoácidos , Aminoacilación , Biocatálisis , Dominio Catalítico , Secuencia Conservada , Femenino , Prueba de Complementación Genética , Histidina-ARNt Ligasa/química , Histidina-ARNt Ligasa/genética , Histidina-ARNt Ligasa/aislamiento & purificación , Humanos , Cinética , Masculino , Mutación/genética , Linaje , Enfermedades del Sistema Nervioso Periférico/genética , Multimerización de Proteína , Especificidad por Sustrato
8.
J Neurol Neurosurg Psychiatry ; 89(8): 870-878, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29449460

RESUMEN

BACKGROUND: Charcot-Marie-Tooth type 2 (CMT2) neuropathy is characterised by a vast clinical and genetic heterogeneity complicating its diagnosis and therapeutic intervention. Identification of molecular signatures that are common to multiple CMT2 subtypes can aid in developing therapeutic strategies and measuring disease outcomes. METHODS: A proteomics-based approach was performed on lymphoblasts from CMT2 patients genetically diagnosed with different gene mutations to identify differentially regulated proteins. The candidate proteins were validated through real-time quantitative PCR and western blotting on lymphoblast samples of patients and controls, motor neurons differentiated from patient-derived induced pluripotent stem cells (iPSCs) and sciatic nerves of CMT2 mouse models. RESULTS: Proteomic profiling of patient lymphoblasts resulted in the identification of profilin 2 (PFN2) and guanidinoacetate methyltransferase (GAMT) as commonly downregulated proteins in different genotypes compared with healthy controls. This decrease was also observed at the transcriptional level on screening 43 CMT2 patients and 22 controls, respectively. A progressive decrease in PFN2 expression with age was observed in patients, while in healthy controls its expression increased with age. Reduced PFN2 expression was also observed in motor neurons differentiated from CMT2 patient-derived iPSCs and sciatic nerves of CMT2 mice when compared with controls. However, no change in GAMT levels was observed in motor neurons and CMT2 mouse-derived sciatic nerves. CONCLUSIONS: We unveil PFN2 and GAMT as molecular determinants of CMT2 with possible indications of the role of PFN2 in the pathogenesis and disease progression. This is the first study describing biomarkers that can boost the development of therapeutic strategies targeting a wider spectrum of CMT2 patients.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Genotipo , Guanidinoacetato N-Metiltransferasa/genética , Mutación , Profilinas/genética , Adulto , Anciano , Axones/patología , Enfermedad de Charcot-Marie-Tooth/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Proteómica , Adulto Joven
9.
Brain ; 140(10): 2541-2549, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28969372

RESUMEN

Small heat shock proteins are molecular chaperones that exert diverse cellular functions. To date, mutations in the coding regions of HSPB1 (Hsp27) and HSPB8 (Hsp22) were reported to cause distal hereditary motor neuropathy and Charcot-Marie-Tooth disease. Recently, the clinical spectrum of HSPB1 and HSPB8 mutations was expanded to also include myopathies. Here we provide an update on the molecular genetics and biology of small heat shock protein mutations in neuromuscular diseases.


Asunto(s)
Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico/genética , Mutación/genética , Enfermedades Neuromusculares/genética , Proteínas Serina-Treonina Quinasas/genética , Anciano , Anciano de 80 o más Años , Humanos , Masculino , Modelos Moleculares , Chaperonas Moleculares
10.
Brain ; 140(6): 1561-1578, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28459997

RESUMEN

Despite extensive efforts, half of patients with rare movement disorders such as hereditary spastic paraplegias and cerebellar ataxias remain genetically unexplained, implicating novel genes and unrecognized mutations in known genes. Non-coding DNA variants are suspected to account for a substantial part of undiscovered causes of rare diseases. Here we identified mutations located deep in introns of POLR3A to be a frequent cause of hereditary spastic paraplegia and cerebellar ataxia. First, whole-exome sequencing findings in a recessive spastic ataxia family turned our attention to intronic variants in POLR3A, a gene previously associated with hypomyelinating leukodystrophy type 7. Next, we screened a cohort of hereditary spastic paraplegia and cerebellar ataxia cases (n = 618) for mutations in POLR3A and identified compound heterozygous POLR3A mutations in ∼3.1% of index cases. Interestingly, >80% of POLR3A mutation carriers presented the same deep-intronic mutation (c.1909+22G>A), which activates a cryptic splice site in a tissue and stage of development-specific manner and leads to a novel distinct and uniform phenotype. The phenotype is characterized by adolescent-onset progressive spastic ataxia with frequent occurrence of tremor, involvement of the central sensory tracts and dental problems (hypodontia, early onset of severe and aggressive periodontal disease). Instead of the typical hypomyelination magnetic resonance imaging pattern associated with classical POLR3A mutations, cases carrying c.1909+22G>A demonstrated hyperintensities along the superior cerebellar peduncles. These hyperintensities may represent the structural correlate to the cerebellar symptoms observed in these patients. The associated c.1909+22G>A variant was significantly enriched in 1139 cases with spastic ataxia-related phenotypes as compared to unrelated neurological and non-neurological phenotypes and healthy controls (P = 1.3 × 10-4). In this study we demonstrate that (i) autosomal-recessive mutations in POLR3A are a frequent cause of hereditary spastic ataxias, accounting for about 3% of hitherto genetically unclassified autosomal recessive and sporadic cases; and (ii) hypomyelination is frequently absent in POLR3A-related syndromes, especially when intronic mutations are present, and thus can no longer be considered as the unifying feature of POLR3A disease. Furthermore, our results demonstrate that substantial progress in revealing the causes of Mendelian diseases can be made by exploring the non-coding sequences of the human genome.


Asunto(s)
Discapacidad Intelectual/genética , Espasticidad Muscular/genética , Atrofia Óptica/genética , ARN Polimerasa III/genética , Paraplejía Espástica Hereditaria/genética , Ataxias Espinocerebelosas/genética , Anciano , Técnicas de Cultivo de Célula , Exones/genética , Femenino , Estudios de Asociación Genética , Humanos , Células Madre Pluripotentes Inducidas , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/fisiopatología , Intrones/genética , Masculino , Persona de Mediana Edad , Espasticidad Muscular/diagnóstico por imagen , Espasticidad Muscular/fisiopatología , Mutación , Atrofia Óptica/diagnóstico por imagen , Atrofia Óptica/fisiopatología , Linaje , Fenotipo , Paraplejía Espástica Hereditaria/diagnóstico por imagen , Paraplejía Espástica Hereditaria/fisiopatología , Ataxias Espinocerebelosas/diagnóstico por imagen , Ataxias Espinocerebelosas/fisiopatología
11.
Am J Hum Genet ; 95(5): 590-601, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25439726

RESUMEN

Using a combination of exome sequencing and linkage analysis, we investigated an English family with two affected siblings in their 40s with recessive Charcot-Marie Tooth disease type 2 (CMT2). Compound heterozygous mutations in the immunoglobulin-helicase-µ-binding protein 2 (IGHMBP2) gene were identified. Further sequencing revealed a total of 11 CMT2 families with recessively inherited IGHMBP2 gene mutations. IGHMBP2 mutations usually lead to spinal muscular atrophy with respiratory distress type 1 (SMARD1), where most infants die before 1 year of age. The individuals with CMT2 described here, have slowly progressive weakness, wasting and sensory loss, with an axonal neuropathy typical of CMT2, but no significant respiratory compromise. Segregating IGHMBP2 mutations in CMT2 were mainly loss-of-function nonsense in the 5' region of the gene in combination with a truncating frameshift, missense, or homozygous frameshift mutations in the last exon. Mutations in CMT2 were predicted to be less aggressive as compared to those in SMARD1, and fibroblast and lymphoblast studies indicate that the IGHMBP2 protein levels are significantly higher in CMT2 than SMARD1, but lower than controls, suggesting that the clinical phenotype differences are related to the IGHMBP2 protein levels.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Exoma/genética , Modelos Moleculares , Mutación Missense/genética , Fenotipo , Adulto , Secuencia de Bases , Enfermedad de Charcot-Marie-Tooth/patología , Mapeo Cromosómico , Femenino , Haplotipos/genética , Humanos , Datos de Secuencia Molecular , Linaje , Mapeo de Interacción de Proteínas , Análisis de Secuencia de ADN , Nervio Sural/patología
12.
Ann Neurol ; 80(6): 823-833, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27686364

RESUMEN

OBJECTIVE: To identify the unknown genetic cause in a large pedigree previously classified with a distinct form of axonal Charcot-Marie-Tooth disease type 2G (CMT2G) and to explore its transcriptional consequences. METHODS: Clinical reevaluation of the pedigree was performed, followed by linkage analysis with the redefined disease statuses, and whole genome and exome sequencing. The impact of the mutation was investigated by immunoblotting and transcriptome sequencing. RESULTS: Thirteen affected individuals over 3 generations displayed mild and quiescent lower-limb axonal sensorimotor neuropathy. Magnetic resonance imaging (MRI) of lower-limb musculature systematically showed fatty atrophy in clinical and subclinical mutation carriers. We redefined the disease-linked region to chr9q31.3-q34.2 and subsequently identified a novel missense variant in the E3 ubiquitin-protein ligase LRSAM1 (p.Cys694Tyr). Unlike previous reports, we demonstrated in patients' lymphoblasts that the mutation does not influence overall protein levels of LRSAM1, nor of its ubiquitylation target TSG101. The mutation is associated with several transcriptional changes, including a significant upregulation of another E3 ubiquitin-protein ligase, NEDD4L, and of TNFRSF21, a key regulator of axonal degeneration. INTERPRETATION: Our findings demonstrate that the isolated genetic entity CMT2G is caused by a missense mutation in LRSAM1 and should be reclassified as CMT2P. MRI of lower-limb musculature can be used to detect minimal signs of the disease. Transcriptome analysis of patients' cells highlights novel molecular players associated with LRSAM1 dysfunction, and reveals pathways and therapeutic targets shared with amyotrophic lateral sclerosis and Alzheimer disease. Ann Neurol 2016;80:823-833.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Receptores del Factor de Necrosis Tumoral/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Mutación Missense , Ubiquitina-Proteína Ligasas Nedd4 , Conducción Nerviosa/genética , Conducción Nerviosa/fisiología , Linaje , Regulación hacia Arriba
13.
J Neurol Neurosurg Psychiatry ; 88(11): 941-952, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28860329

RESUMEN

BACKGROUND: Charcot-Marie-Tooth disease type 1A (CMT1A) is the most common inherited neuropathy, a debilitating disease without known cure. Among patients with CMT1A, disease manifestation, progression and severity are strikingly variable, which poses major challenges for the development of new therapies. Hence, there is a strong need for sensitive outcome measures such as disease and progression biomarkers, which would add powerful tools to monitor therapeutic effects in CMT1A. METHODS: We established a pan-European and American consortium comprising nine clinical centres including 311 patients with CMT1A in total. From all patients, the CMT neuropathy score and secondary outcome measures were obtained and a skin biopsy collected. In order to assess and validate disease severity and progression biomarkers, we performed qPCR on a set of 16 animal model-derived potential biomarkers in skin biopsy mRNA extracts. RESULTS: In 266 patients with CMT1A, a cluster of eight cutaneous transcripts differentiates disease severity with a sensitivity and specificity of 90% and 76.1%, respectively. In an additional cohort of 45 patients with CMT1A, from whom a second skin biopsy was taken after 2-3 years, the cutaneous mRNA expression of GSTT2, CTSA, PPARG, CDA, ENPP1 and NRG1-Iis changing over time and correlates with disease progression. CONCLUSIONS: In summary, we provide evidence that cutaneous transcripts in patients with CMT1A serve as disease severity and progression biomarkers and, if implemented into clinical trials, they could markedly accelerate the development of a therapy for CMT1A.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/terapia , Progresión de la Enfermedad , Marcadores Genéticos/genética , Piel/patología , Resultado del Tratamiento , Adulto , Anciano , Biopsia , Catepsina A/genética , Enfermedad de Charcot-Marie-Tooth/sangre , Enfermedad de Charcot-Marie-Tooth/genética , Femenino , Glutatión Transferasa/genética , Glicoproteínas/genética , Humanos , Masculino , Persona de Mediana Edad , Neurregulina-1/genética , Proteínas Nucleares , PPAR gamma/genética , Hidrolasas Diéster Fosfóricas/genética , Pronóstico , Pirofosfatasas/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcripción Genética/genética
14.
Neurogenetics ; 16(1): 33-42, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25231362

RESUMEN

Autosomal recessive forms of Charcot-Marie-Tooth disease (ARCMT) are rare but severe disorders of the peripheral nervous system. Their molecular basis is poorly understood due to the extensive genetic and clinical heterogeneity, posing considerable challenges for patients, physicians, and researchers. We report on the genetic findings from a systematic study of a large collection of 174 independent ARCMT families. Initial sequencing of the three most common ARCMT genes (ganglioside-induced differentiation protein 1­GDAP1, SH3 domain and tetratricopeptide repeats-containing protein 2­SH3TC2, histidine-triad nucleotide binding protein 1­HINT1) identified pathogenic mutations in 41 patients. Subsequently, 87 selected nuclear families underwent single nucleotide polymorphism (SNP) genotyping and homozygosity mapping, followed by targeted screening of known ARCMT genes. This strategy provided molecular diagnosis to 22% of the families. Altogether, our unbiased genetic approach identified pathogenic mutations in ten ARCMT genes in a total of 41.3% patients. Apart from a newly described founder mutation in GDAP1, the majority of variants constitute private molecular defects. Since the gene testing was independent of the clinical phenotype of the patients, we identified mutations in patients with unusual or additional clinical features, extending the phenotypic spectrum of the SH3TC2 gene. Our study provides an overview of the ARCMT genetic landscape and proposes guidelines for tackling the genetic heterogeneity of this group of hereditary neuropathies.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/diagnóstico , Enfermedad de Charcot-Marie-Tooth/genética , Mutación , Mapeo Cromosómico , Análisis Mutacional de ADN , Femenino , Genes Recesivos , Homocigoto , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Proteínas del Tejido Nervioso/genética , Fenotipo , Polimorfismo de Nucleótido Simple , Proteínas/genética
15.
Cochrane Database Syst Rev ; (12): CD011952, 2015 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-26662471

RESUMEN

BACKGROUND: Charcot-Marie-Tooth disease (CMT) comprises a large group of different forms of hereditary motor and sensory neuropathy. The molecular basis of several CMT subtypes has been clarified during the last 20 years. Since slowly progressive muscle weakness and sensory disturbances are the main features of these syndromes, treatments aim to improve motor impairment and sensory disturbances to improve abilities. Pharmacological treatment trials in CMT are rare. This review was derived from a Cochrane review, Treatment for Charcot Marie Tooth disease, which will be updated via this review and a forthcoming title, Treatments other than ascorbic acid for Charcot-Marie-Tooth disease. OBJECTIVES: To assess the effects of ascorbic acid (vitamin C) treatment for CMT. SEARCH METHODS: On 21 September 2015, we searched the Cochrane Neuromuscular Specialised Register, Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE and LILACS for randomised controlled trials (RCTs) of treatment for CMT. We also checked clinical trials registries for ongoing studies. SELECTION CRITERIA: We included RCTs and quasi-RCTs of any ascorbic acid treatment for people with CMT. Where a study aimed to evaluate the treatment of general neuromuscular symptoms of people with peripheral neuropathy including CMT, we included the study if we were able to identify the effect of treatment in the CMT group. We did not include observational studies or case reports of ascorbic acid treatment in people with CMT. DATA COLLECTION AND ANALYSIS: Two review authors (BG and JB) independently extracted the data and assessed study quality. MAIN RESULTS: Six RCTs compared the effect of oral ascorbic acid (1 to 4 grams) and placebo treatment in CMT1A. In five trials involving adults with CMT1A, a total of 622 participants received ascorbic acid or placebo. Trials were largely at low risk of bias. There is high-quality evidence that ascorbic acid does not improve the course of CMT1A in adults as measured by the CMT neuropathy score (0 to 36 scale) at 12 months (mean difference (MD) -0.37; 95% confidence intervals (CI) -0.83 to 0.09; five studies; N = 533), or at 24 months (MD -0.21; 95% CI -0.81 to 0.39; three studies; N = 388). Ascorbic acid treatment showed a positive effect on the nine-hole peg test versus placebo (MD -1.16 seconds; 95% CI -1.96 to -0.37), but the clinical significance of this result is probably small. Meta-analyses of other secondary outcome parameters showed no relevant benefit of ascorbic acid. In one trial, 80 children with CMT1A received ascorbic acid or placebo. The trial showed no clinical benefit of ascorbic acid treatment. Adverse effects did not differ in their nature or abundance between ascorbic acid and placebo. AUTHORS' CONCLUSIONS: High-quality evidence indicates that ascorbic acid does not improve the course of CMT1A in adults in terms of the outcome parameters used. According to low-quality evidence, ascorbic acid does not improve the course of CMT1A in children. However, CMT1A is slowly progressive and the outcome parameters show only small change over time. Longer study durations should be considered, and outcome parameters more sensitive to change over time should be designed and validated for future studies.


Asunto(s)
Ácido Ascórbico/uso terapéutico , Enfermedad de Charcot-Marie-Tooth/tratamiento farmacológico , Adulto , Enfermedad de Charcot-Marie-Tooth/genética , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto
16.
Curr Opin Neurol ; 27(5): 532-40, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25110935

RESUMEN

PURPOSE OF REVIEW: This article focuses on recent advances in Charcot-Marie-Tooth disease, in particular additions to the genetic spectrum, novel paradigms in molecular techniques and an update on therapeutic strategies. RECENT FINDINGS: Several new Charcot-Marie-Tooth disease-causing genes have been recently identified, further enlarging the genetic diversity and phenotypic variability, including: SBF1, DHTKD1, TFG, MARS, HARS, HINT1, TRIM1, AIFM1, PDK3 and GNB4. The increasing availability and affordability of next-generation sequencing technologies has ramped up gene discovery and drastically changed genetic screening strategies. All large-scale trials studying the effect of ascorbic acid in Charcot-Marie-Tooth 1A have now been completed and were negative. Efforts have been made to design more robust outcome-measures for clinical trials. Promising results with lonaprisan, curcumin and histone deacetylase 6 inhibitors have been obtained in animal models. SUMMARY: Charcot-Marie-Tooth is the most common form of inherited peripheral neuropathy and represents the most prevalent hereditary neuromuscular disorder. The genetic spectrum spans more than 70 genes. Gene discovery has been revolutionized recently by new high-throughput molecular technologies. In addition, the phenotypic diversity has grown tremendously. This is a major challenge for geneticists and neurologists. No effective therapy is available for Charcot-Marie-Tooth. Several large trials with ascorbic acid were negative but research into novel compounds continues.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/terapia , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Humanos
17.
Brain Commun ; 6(2): fcae070, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495304

RESUMEN

Pathogenic variants in six aminoacyl-tRNA synthetase (ARS) genes are implicated in neurological disorders, most notably inherited peripheral neuropathies. ARSs are enzymes that charge tRNA molecules with cognate amino acids. Pathogenic variants in asparaginyl-tRNA synthetase (NARS1) cause a neurological phenotype combining developmental delay, ataxia and demyelinating peripheral neuropathy. NARS1 has not yet been linked to axonal Charcot-Marie-Tooth disease. Exome sequencing of patients with inherited peripheral neuropathies revealed three previously unreported heterozygous NARS1 variants in three families. Clinical and electrophysiological details were assessed. We further characterized all three variants in a yeast complementation model and used a knock-in mouse model to study variant p.Ser461Phe. All three variants (p.Met236del, p.Cys342Tyr and p.Ser461Phe) co-segregate with the sensorimotor axonal neuropathy phenotype. Yeast complementation assays show that none of the three NARS1 variants support wild-type yeast growth when tested in isolation (i.e. in the absence of a wild-type copy of NARS1), consistent with a loss-of-function effect. Similarly, the homozygous knock-in mouse model (p.Ser461Phe/Ser472Phe in mouse) also demonstrated loss-of-function characteristics. We present three previously unreported NARS1 variants segregating with a sensorimotor neuropathy phenotype in three families. Functional studies in yeast and mouse support variant pathogenicity. Thus, NARS1 is the seventh ARS implicated in dominant axonal Charcot-Marie-Tooth disease, further stressing that all dimeric ARSs should be evaluated for Charcot-Marie-Tooth disease.

18.
Brain Pathol ; 34(1): e13200, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37581289

RESUMEN

Myelin protein zero (MPZ/P0) is a major structural protein of peripheral nerve myelin. Disease-associated variants in the MPZ gene cause a wide phenotypic spectrum of inherited peripheral neuropathies. Previous nerve biopsy studies showed evidence for subtype-specific morphological features. Here, we aimed at enhancing the understanding of these subtype-specific features and pathophysiological aspects of MPZ neuropathies. We examined archival material from two Central European centers and systematically determined genetic, clinical, and neuropathological features of 21 patients with MPZ mutations compared to 16 controls. Cases were grouped based on nerve conduction data into congenital hypomyelinating neuropathy (CHN; n = 2), demyelinating Charcot-Marie-Tooth (CMT type 1; n = 11), intermediate (CMTi; n = 3), and axonal CMT (type 2; n = 5). Six cases had combined muscle and nerve biopsies and one underwent autopsy. We detected four MPZ gene variants not previously described in patients with neuropathy. Light and electron microscopy of nerve biopsies confirmed fewer myelinated fibers, more onion bulbs and reduced regeneration in demyelinating CMT1 compared to CMT2/CMTi. In addition, we observed significantly more denervated Schwann cells, more collagen pockets, fewer unmyelinated axons per Schwann cell unit and a higher density of Schwann cell nuclei in CMT1 compared to CMT2/CMTi. CHN was characterized by basal lamina onion bulb formation, a further increase in Schwann cell density and hypomyelination. Most late onset axonal neuropathy patients showed microangiopathy. In the autopsy case, we observed prominent neuromatous hyperinnervation of the spinal meninges. In four of the six muscle biopsies, we found marked structural mitochondrial abnormalities. These results show that MPZ alterations not only affect myelinated nerve fibers, leading to either primarily demyelinating or axonal changes, but also affect non-myelinated nerve fibers. The autopsy case offers insight into spinal nerve root pathology in MPZ neuropathy. Finally, our data suggest a peculiar association of MPZ mutations with mitochondrial alterations in muscle.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Proteína P0 de la Mielina , Humanos , Proteína P0 de la Mielina/genética , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Mutación/genética , Proteínas/genética , Biopsia
19.
Autophagy ; 19(8): 2217-2239, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36854646

RESUMEN

Chaperone-assisted selective autophagy (CASA) is a highly selective pathway for the disposal of misfolding and aggregating proteins. In muscle, CASA assures muscle integrity by favoring the turnover of structural components damaged by mechanical strain. In neurons, CASA promotes the removal of aggregating substrates. A crucial player of CASA is HSPB8 (heat shock protein family B (small) member 8), which acts in a complex with HSPA, their cochaperone BAG3, and the E3 ubiquitin ligase STUB1. Recently, four novel HSPB8 frameshift (fs) gene mutations have been linked to neuromyopathies, and encode carboxy-terminally mutated HSPB8, sharing a common C-terminal extension. Here, we analyzed the biochemical and functional alterations associated with the HSPB8_fs mutant proteins. We demonstrated that HSPB8_fs mutants are highly insoluble and tend to form proteinaceous aggregates in the cytoplasm. Notably, all HSPB8 frameshift mutants retain their ability to interact with CASA members but sequester them into the HSPB8-positive aggregates together with two autophagy receptors SQSTM1/p62 and TAX1BP1. This copartitioning process negatively affects the CASA capability to remove its clients and causes a general failure in proteostasis response. Further analyses revealed that the aggregation of the HSPB8_fs mutants occurs independently of the other CASA members or from the autophagy receptors interaction, but it is an intrinsic feature of the mutated amino acid sequence. HSPB8_fs mutants aggregation alters the differentiation capacity of muscle cells and impairs sarcomere organization. Collectively, these results shed light on a potential pathogenic mechanism shared by the HSPB8_fs mutants described in neuromuscular diseases.Abbreviations : ACD: α-crystallin domain; ACTN: actinin alpha; BAG3: BAG cochaperone 3; C: carboxy; CASA: chaperone-assisted selective autophagy; CE: carboxy-terminal extension; CLEM: correlative light and electron microscopy; CMT2L: Charcot-Marie-Tooth type 2L; CTR: carboxy-terminal region; dHMNII: distal hereditary motor neuropathy type II; EV: empty vector; FRA: filter retardation assay; fs: frameshift; HSPA/HSP70: heat shock protein family A (Hsp70); HSPB1/Hsp27: heat shock protein family B (small) member 1; HSPB8/Hsp22: heat shock protein family B (small) member 8; HTT: huntingtin; KO: knockout; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; MD: molecular dynamics; MTOC: microtubule organizing center; MYH: myosin heavy chain; MYOG: myogenin; NBR1: NBR1 autophagy cargo receptor; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; NSC34: Neuroblastoma X Spinal Cord 34; OPTN: optineurin; polyQ: polyglutamine; SQSTM1/p62: sequestosome 1; STUB1/CHIP: STIP1 homology and U-box containing protein 1; TARDBP/TDP-43: TAR DNA binding protein; TAX1BP1: Tax1 binding protein 1; TUBA: tubulin alpha; WT: wild-type.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Enfermedades Neuromusculares , Humanos , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Autofagia/genética , Proteínas de Choque Térmico/metabolismo , Enfermedad de Charcot-Marie-Tooth/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
20.
Brain ; 134(Pt 9): 2664-76, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21840889

RESUMEN

Early onset hereditary motor and sensory neuropathies are rare disorders encompassing congenital hypomyelinating neuropathy with disease onset in the direct post-natal period and Dejerine-Sottas neuropathy starting in infancy. The clinical spectrum, however, reaches beyond the boundaries of these two historically defined disease entities. De novo dominant mutations in PMP22, MPZ and EGR2 are known to be a typical cause of very early onset hereditary neuropathies. In addition, mutations in several other dominant and recessive genes for Charcot-Marie-Tooth disease may lead to similar phenotypes. To estimate mutation frequencies and to gain detailed insights into the genetic and phenotypic heterogeneity of early onset hereditary neuropathies, we selected a heterogeneous cohort of 77 unrelated patients who presented with symptoms of peripheral neuropathy within the first year of life. The majority of these patients were isolated in their family. We performed systematic mutation screening by means of direct sequencing of the coding regions of 11 genes: MFN2, PMP22, MPZ, EGR2, GDAP1, NEFL, FGD4, MTMR2, PRX, SBF2 and SH3TC2. In addition, screening for the Charcot-Marie-Tooth type 1A duplication on chromosome 17p11.2-12 was performed. In 35 patients (45%), mutations were identified. Mutations in MPZ, PMP22 and EGR2 were found most frequently in patients presenting with early hypotonia and breathing difficulties. The recessive genes FGD4, PRX, MTMR2, SBF2, SH3TC2 and GDAP1 were mutated in patients presenting with early foot deformities and variable delay in motor milestones after an uneventful neonatal period. Several patients displaying congenital foot deformities but an otherwise normal early development carried the Charcot-Marie-Tooth type 1A duplication. This study clearly illustrates the genetic heterogeneity underlying hereditary neuropathies with infantile onset.


Asunto(s)
Edad de Inicio , Neuropatía Hereditaria Motora y Sensorial/genética , Adolescente , Adulto , Anciano , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Niño , Preescolar , Estudios de Cohortes , Análisis Mutacional de ADN , Neuropatía Hereditaria Motora y Sensorial/patología , Neuropatía Hereditaria Motora y Sensorial/fisiopatología , Humanos , Lactante , Persona de Mediana Edad , Mutación , Fenotipo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA