RESUMEN
Seneca Valley virus (SVV) is related to vesicular disease in pigs, and its clinical symptoms are indistinguishable from other notifiable clinical symptoms of vesicular disease such as foot-and-mouth disease. The rapid and accurate detection of SVV is essential to confirm the pathogenic factors and initiate the implementation of control measures. The development of a rapid, simple, convenient, and low-cost molecular (nucleic acid amplification) test that can be used at the sample collection point has been identified as a key component for controlling SVV. This study describes the development and demonstration of recombinase polymerase amplification (RPA) test targeting the conserved regions of SVV for detection of SVV. The Primers and probes designed by us have shown good sensitivity and specificity in RPA test, which is helpful for RPA to be an effective tool for rapid diagnosis of SVV.
Asunto(s)
Técnicas de Amplificación de Ácido Nucleico , Picornaviridae/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Picornaviridae/aislamiento & purificaciónRESUMEN
Integrating irreplaceable features of both covalent chemistry and noncovalent interactions into a single entity to maximize the applicability is highly desired. Here, a discovery of this type of hybrid, developed by Stupp and co-workers, is developed, where a synergistic combination of covalent and noncovalent compartments enables them to assemble by each other perfectively. The covalent compartments can grow into polymer chains assisted by a supramolecular compartment. The supramolecular compartments can be reversibly removed and re-formed to reconstitute the hybrid structure. The obtained soft materials can serve as functional platforms for molecular delivery or self-repairing materials.
Asunto(s)
Modelos Químicos , Polímeros/química , Polímeros/síntesis químicaRESUMEN
Two porous covalent organic frameworks (COFs) with good biocompatibility were employed as drug nanocarriers, where three different drugs were loaded for subsequent drug release in vitro. The present work demonstrates that COFs are applicable in drug delivery for therapeutic applications.
Asunto(s)
Portadores de Fármacos , Nanotecnología , Compuestos Orgánicos/química , Materiales Biocompatibles , Microscopía Electrónica de Rastreo , Microscopía Electrónica de TransmisiónRESUMEN
A "turn-on" thiol-responsive fluorescence probe was synthesized and integrated into polymeric nanoparticles for sensing intracellular thiols. There is a photo-induced electron transfer process in the off state of the probe, and this process is terminated upon the reaction with thiol compounds. Configuration interaction singles (CIS) calculation was performed to confirm the mechanism of this process. A series of sensing studies were carried out, showing that the probe-integrated nanoparticles were highly selective towards biological thiol compounds over non-thiolated amino acids. Kinetic studies were also performed to investigate the relative reaction rate between the probe and the thiolated amino acids. Subsequently, the Gibbs free energy of the reactions was explored by means of the electrochemical method. Finally, the detection system was employed for sensing intracellular thiols in cancer cells, and the sensing selectivity could be further enhanced with the use of a cancer cell-targeting ligand in the nanoparticles. This development paves a path for the sensing and detection of biological thiols, serving as a potential diagnostic tool in the future.