Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Small ; 18(36): e2203003, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35717669

RESUMEN

The burden of bone fractures demands development of effective biomaterial solutions, while additional acute events such as noncompressible bleeding further motivate the search for multi-functional implants to avoid complications including osseous hemorrhage, infection, and nonunion. Bone wax has been widely used in orthopedic bleeding control due to its simplicity of use and conformation to irregular defects; however, its nondegradability results in impaired bone healing, risk of infection, and significant inflammatory responses. Herein, a class of intrinsically fluorescent, osteopromotive citrate-based polymer/hydroxyapatite (HA) composites (BPLP-Ser/HA) as a highly malleable press-fit putty is designed. BPLP-Ser/HA putty displays mechanics replicating early nonmineralized bone (initial moduli from ≈2-500 kPa), hydration induced mechanical strengthening in physiological conditions, tunable degradation rates (over 2 months), low swelling ratios (<10%), clotting and hemostatic sealing potential (resistant to blood pressure for >24 h) and significant adhesion to bone (≈350-550 kPa). Simultaneously, citrate's bioactive properties result in antimicrobial (≈100% and 55% inhibition of S. aureus and E. coli) and osteopromotive effects. Finally, BPLP-Ser/HA putty demonstrates in vivo regeneration in a critical-sized rat calvaria model equivalent to gold standard autograft. BPLP-Ser/HA putty represents a simple, off-the-shelf solution to the combined challenges of acute wound management and subsequent bone regeneration.


Asunto(s)
Sustitutos de Huesos , Ácido Cítrico , Animales , Regeneración Ósea , Huesos , Citratos , Durapatita , Escherichia coli , Ratas , Staphylococcus aureus
2.
Proc Natl Acad Sci U S A ; 115(50): E11741-E11750, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30478052

RESUMEN

A comprehensive understanding of the key microenvironmental signals regulating bone regeneration is pivotal for the effective design of bioinspired orthopedic materials. Here, we identified citrate as an osteopromotive factor and revealed its metabonegenic role in mediating citrate metabolism and its downstream effects on the osteogenic differentiation of human mesenchymal stem cells (hMSCs). Our studies show that extracellular citrate uptake through solute carrier family 13, member 5 (SLC13a5) supports osteogenic differentiation via regulation of energy-producing metabolic pathways, leading to elevated cell energy status that fuels the high metabolic demands of hMSC osteodifferentiation. We next identified citrate and phosphoserine (PSer) as a synergistic pair in polymeric design, exhibiting concerted action not only in metabonegenic potential for orthopedic regeneration but also in facile reactivity in a fluorescent system for materials tracking and imaging. We designed a citrate/phosphoserine-based photoluminescent biodegradable polymer (BPLP-PSer), which was fabricated into BPLP-PSer/hydroxyapatite composite microparticulate scaffolds that demonstrated significant improvements in bone regeneration and tissue response in rat femoral-condyle and cranial-defect models. We believe that the present study may inspire the development of new generations of biomimetic biomaterials that better recapitulate the metabolic microenvironments of stem cells to meet the dynamic needs of cellular growth, differentiation, and maturation for use in tissue engineering.


Asunto(s)
Ácido Cítrico/metabolismo , Células Madre Mesenquimatosas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Materiales Biocompatibles/química , Biopolímeros/química , Regeneración Ósea/fisiología , Adhesión Celular , Diferenciación Celular/fisiología , Proliferación Celular , Modelos Animales de Enfermedad , Fracturas del Fémur/patología , Fracturas del Fémur/terapia , Humanos , Masculino , Células Madre Mesenquimatosas/citología , Redes y Vías Metabólicas , Modelos Biológicos , Osteogénesis/fisiología , Fenotipo , Fosfoserina/metabolismo , Ratas , Ratas Sprague-Dawley , Fracturas Craneales/patología , Fracturas Craneales/terapia , Nicho de Células Madre/fisiología , Simportadores/metabolismo , Ingeniería de Tejidos , Andamios del Tejido/química
3.
World J Stem Cells ; 16(3): 287-304, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38577232

RESUMEN

BACKGROUND: The self-assembly of solid organs from stem cells has the potential to greatly expand the applicability of regenerative medicine. Stem cells can self-organise into microsized organ units, partially modelling tissue function and regeneration. Dental pulp organoids have been used to recapitulate the processes of tooth development and related diseases. However, the lack of vasculature limits the utility of dental pulp organoids. AIM: To improve survival and aid in recovery after stem cell transplantation, we demonstrated the three-dimensional (3D) self-assembly of adult stem cell-human dental pulp stem cells (hDPSCs) and endothelial cells (ECs) into a novel type of spheroid-shaped dental pulp organoid in vitro under hypoxia and conditioned medium (CM). METHODS: During culture, primary hDPSCs were induced to differentiate into ECs by exposing them to a hypoxic environment and CM. The hypoxic pretreated hDPSCs were then mixed with ECs at specific ratios and conditioned in a 3D environment to produce prevascularized dental pulp organoids. The biological characteristics of the organoids were analysed, and the regulatory pathways associated with angiogenesis were studied. RESULTS: The combination of these two agents resulted in prevascularized human dental pulp organoids (Vorganoids) that more closely resembled dental pulp tissue in terms of morphology and function. Single-cell RNA sequencing of dental pulp tissue and RNA sequencing of Vorganoids were integrated to analyse key regulatory pathways associated with angiogenesis. The biomarkers forkhead box protein O1 and fibroblast growth factor 2 were identified to be involved in the regulation of Vorganoids. CONCLUSION: In this innovative study, we effectively established an in vitro model of Vorganoids and used it to elucidate new mechanisms of angiogenesis during regeneration, facilitating the development of clinical treatment strategies.

4.
Stem Cell Res Ther ; 14(1): 176, 2023 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-37422687

RESUMEN

BACKGROUND: Dental pulp stem cells (DPSCs) play a crucial role in dentin-pulp complex regeneration. Further understanding of the mechanism by which DPSCs remain in a quiescent state could contribute to improvements in the dentin-pulp complex and dentinogenesis. METHODS: TSC1 conditional knockout (DMP1-Cre+; TSC1f/f, hereafter CKO) mice were generated to increase the activity of mechanistic target of rapamycin complex 1 (mTORC1). H&E staining, immunofluorescence and micro-CT analysis were performed with these CKO mice and littermate controls. In vitro, exosomes were collected from the supernatants of MDPC23 cells with different levels of mTORC1 activity and then characterized by transmission electron microscopy and nanoparticle tracking analysis. DPSCs were cocultured with MDPC23 cells and MDPC23 cell-derived exosomes. Alizarin Red S staining, ALP staining, qRT‒PCR, western blotting analysis and micro-RNA sequencing were performed. RESULTS: Our study showed that mTORC1 activation in odontoblasts resulted in thicker dentin and higher dentin volume/tooth volume of molars, and it increased the expression levels of the exosome markers CD63 and Alix. In vitro, when DPSCs were cocultured with MDPC23 cells, odontoblastic differentiation was inhibited. However, the inhibition of odontoblastic differentiation was reversed when DPSCs were cocultured with MDPC23 cells with mTORC1 overactivation. To further study the effects of mTORC1 on exosome release from odontoblasts, MDPC23 cells were treated with rapamycin or shRNA-TSC1 to inactivate or activate mTORC1, respectively. The results revealed that exosome release from odontoblasts was negatively correlated with mTORC1 activity. Moreover, exosomes derived from MDPC23 cells with active or inactive mTORC1 inhibited the odontoblastic differentiation of DPSCs at the same concentration. miRNA sequencing analysis of exosomes that were derived from shTSC1-transfected MDPC23 cells, rapamycin-treated MDPC23 cells or nontreated MDPC23 cells revealed that the majority of the miRNAs were similar among these groups. In addition, exosomes derived from odontoblasts inhibited the odontoblastic differentiation of DPSCs, and the inhibitory effect was positively correlated with exosome concentration. CONCLUSION: mTORC1 regulates exosome release from odontoblasts to inhibit the odontoblastic differentiation of DPSCs, but it does not alter exosomal contents. These findings might provide a new understanding of dental pulp complex regeneration.


Asunto(s)
Exosomas , Odontoblastos , Ratones , Animales , Proteínas de la Matriz Extracelular/metabolismo , Pulpa Dental/metabolismo , Exosomas/metabolismo , Diferenciación Celular , Células Madre/metabolismo , Células Cultivadas
5.
ACS Appl Mater Interfaces ; 15(33): 39064-39080, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37523857

RESUMEN

No current pharmacological approach is capable of simultaneously inhibiting the symptomatology and structural progression of osteoarthritis. M1 macrophages and activated synovial fibroblasts (SFs) mutually contribute to the propagation of joint pain and cartilage destruction in osteoarthritis. Here, we report the engineering of an apoptotic neutrophil membrane-camouflaged liposome (termed "NM@Lip") for precise delivery of triamcinolone acetonide (TA) by dually targeting M1 macrophages and activated SFs in osteoarthritic joints. NM@Lip has a high cellular uptake in M1 macrophages and activated SFs. Furthermore, TA-loaded NM@Lip (TA-NM@Lip) effectively repolarizes M1 macrophages to the M2 phenotype and transforms pathological SFs to the deactivated phenotype by inhibiting the PI3K/Akt pathway. NM@Lip retains in the joint for up to 28 days and selectively distributes into M1 macrophages and activated SFs in synovium with low distribution in cartilage. TA-NM@Lip decreases the levels of pro-inflammatory cytokines, chemokines, and cartilage-degrading enzymes in osteoarthritic joints. In a rodent model of osteoarthritis-related pain, a single intra-articular TA-NM@Lip injection attenuates synovitis effectively and achieves complete pain relief with long-lasting effects. In a rodent model of osteoarthritis-related joint degeneration, repeated intra-articular TA-NM@Lip injections induce no obvious cartilage damage and effectively attenuate cartilage degeneration. Taken together, TA-NM@Lip represents a promising nanotherapeutic approach for osteoarthritis therapy.


Asunto(s)
Liposomas , Osteoartritis , Humanos , Liposomas/metabolismo , Neutrófilos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Osteoartritis/patología , Macrófagos , Fibroblastos/metabolismo , Dolor/metabolismo
6.
Biotechnol Appl Biochem ; 58(5): 335-44, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21995536

RESUMEN

Porogen leaching is a widely used and simple technique for the creation of porous scaffolds in tissue engineering. Sodium chloride (NaCl) is the most commonly used porogen, but the current grinding and sieving methods generate salt particles with huge size variations and cannot generate porogens in the submicron size range. We have developed a facile method based on the principles of crystallization to precisely control salt crystal sizes down to a few microns within a narrow size distribution. The resulting NaCl crystal size could be controlled through the solution concentration, crystallization temperature, and crystallization time. A reduction in solution temperature, longer crystallization times, and an increase in salt concentration resulted in an increase in NaCl crystal sizes due to the lowered solubility of the salt solution. The nucleation and crystallization technique provides superior control over the resulting NaCl size distribution (13.78 ± 1.18 µm), whereas the traditional grinding and sieving methods produced NaCl porogens 13.89 ± 12.49 µm in size. The resulting NaCl porogens were used to fabricate scaffolds with increased interconnectivity, porous microchanneled scaffolds, and multiphasic vascular grafts. This new generation of salt porogen provides great freedom in designing versatile scaffolds for various tissue-engineering applications.


Asunto(s)
Poliésteres/química , Cloruro de Sodio/química , Andamios del Tejido/química , Uretano/química , Prótesis Vascular , Cristalización/instrumentación , Diseño de Equipo , Poliésteres/síntesis química , Porosidad , Ingeniería de Tejidos , Uretano/síntesis química
7.
Autophagy ; 16(2): 271-288, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31007149

RESUMEN

A switch from autophagy to apoptosis is implicated in chondrocytes during the osteoarthritis (OA) progression with currently unknown mechanism(s). In this study we utilized a flow fluid shear stress (FFSS) model in cultured chondrocytes and a unilateral anterior crossbite (UAC) animal model. We found that both FFSS and UAC actively induced endoplasmic reticulum stress (ERS) in the temporomandibular joints (TMJ) chondrocytes, as demonstrated by dramatic increases in expression of HSPA5, p-EIF2AK3, p-ERN1 and ATF6. Interestingly, both FFSS and UAC activated not only pro-death p-EIF2AK3-mediated ERS-apoptosis programs but also pro-survival p-ERN1-mediated autophagic flux in chondrocytes. Data from FFSS demonstrated that MTORC1, a downstream of p-ERN1, suppressed autophagy but promoted p-EIF2AK3 mediated ERS-apoptosis. Data from UAC model demonstrated that at early stage both the p-ERN1 and p-EIF2AK3 were activated and MTORC1 was inhibited in TMJ chondrocytes. At late stage, MTORC1-p-EIF2AK3-mediated ERS apoptosis were predominant, while p-ERN1 and autophagic flux were inhibited. Inhibition of MTORC1 by TMJ local injection of rapamycin in rats or inducible ablation of MTORC1 expression selectively in chondrocytes in mice promoted chondrocyte autophagy and suppressed apoptosis, and reduced TMJ cartilage loss induced by UAC. In contrast, MTORC1 activation by TMJ local administration of MHY1485 or genetic deletion of Tsc1, an upstream MTORC1 suppressor, resulted in opposite effects. Collectively, our results establish that aberrant mechanical loading causes cartilage degeneration by activating, at least in part, the MTORC1 signaling which modulates the autophagy and apoptosis programs in TMJ chondrocytes. Thus, inhibition of MTORC1 provides a novel therapeutic strategy for prevention and treatment of OA.Abbreviations : ACTB: actin beta; ATF6: activating transcription factor 6; BECN1: beclin 1; BFL: bafilomycin A1; CASP12: caspase 12; CASP3: caspase 3; DAPI: 4',6-diamidino-2-phenylindole; DDIT3: DNA-damage inducible transcript 3; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; ERS: endoplasmic reticulum stress; ERN1/IRE1: endoplasmic reticulum to nucleus signaling 1; FFSS: flow fluid shear stress; HSPA5/GRP78/BiP: heat shock protein 5; LAMP2: lysosome-associated membrane protein 2; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin complex 1; OA: osteoarthritis; PRKAA1/2/AMPK1/2: protein kinase, AMP-activated, alpha 1/2 catalytic subunit; RPS6: ribosomal protein S6; Rapa: rapamycin; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TG: thapsigargin; TMJ: temporomandibular joints; TSC1/2: tuberous sclerosis complex 1/2; UAC: unilateral anterior crossbite; UPR: unfolded protein response; XBP1: x-box binding protein 1.


Asunto(s)
Apoptosis , Autofagia , Cartílago Articular/patología , Condrocitos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Osteoartritis/patología , Transducción de Señal , Articulación Temporomandibular/patología , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular , Condrocitos/efectos de los fármacos , Condrocitos/ultraestructura , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Endorribonucleasas/metabolismo , Femenino , Eliminación de Gen , Maloclusión/patología , Morfolinas/farmacología , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas Sprague-Dawley , Reología , Estrés Mecánico , Factores de Tiempo , Triazinas/farmacología , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo , eIF-2 Quinasa/metabolismo
8.
Biomaterials ; 232: 119719, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31901688

RESUMEN

Tissue adhesives are commonly used in surgeries and regenerative engineering for the repair and regeneration of topical and internal wounds on tissues and organs such as skin, heart, blood vessels, and bone. However, achieving rapid crosslinking, strong wet adhesion and cohesion strengths, and minimal cytotoxicity remains a critical roadblock for clinical translation. Herein, in contrast to harsh and cytotoxic oxidants, magnesium oxide (MgO) particles were found to facilitate rapid crosslinking for injectable citrate-based mussel-inspired tissue bioadhesives synthesized by reacting citric acid, PEG-PPG-PEG diol and dopamine (iC-EPE). Our results confirmed the role of MgO particles as both crosslinkers and composite fillers to concurrently enhance bioadhesive cohesion and adhesion. iC-EPE crosslinked by MgO with/without sodium periodate (PI) exhibit enhanced mechanical strengths (1.0 Mpa < tensile strength ≤ 4.5 MPa) compared to that of iC-EPE crosslinked only by PI (~0.75 MPa), high adhesion strength (up to 125 kPa, 8 fold that of fibrin glue (~15 kPa)), tunable degradability (full degradation from <1 week to > 1 month), excellent in vitro and in vivo biocompatibility, encouraging anti-bacterial performance, and favorable wound closure efficacy. Thus, MgO crosslinked bioadhesives possess great potential for a wide range of applications in surgery and regenerative engineering.


Asunto(s)
Bivalvos , Adhesivos Tisulares , Adhesivos , Animales , Citratos , Ácido Cítrico , Óxido de Magnesio
9.
Adv Healthc Mater ; 7(18): e1800532, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30047618

RESUMEN

Fluorescence imaging has emerged as a promising technique for monitoring and assessing various biologically relevant species in cells and organisms, driving the demand for effective fluorescent agents with good biocompatibility and high fluorescence performance. However, traditional fluorescent agents, such as quantum dots (QDs) and organic dyes, either suffer from toxicity concerns or poor fluorescence performance (e.g., low photobleaching-resistance). In this regard, citrate-based fluorescent biomaterials, which are synthesized from the natural and biocompatible precursor of citric acid (CA), have become competitive alternatives for fluorescence imaging owing to their biocompatibility, cost effectiveness, straightforward synthetic routes, flexible designability, as well as strong fluorescence with adjustable excitation/emission wavelengths. Accordingly, numerous citrate-based biomaterials, including carbon dots (CDs), biodegradable photoluminescent polymers (BPLPs), and small molecular fluorophores, have been developed and researched in the past few decades. This review discusses recent progress in the research and development of citrate-based fluorescent materials with emphasis on their design and synthesis considerations, material properties, fluorescence properties and mechanisms, as well as biomedical applications. It is expected that this review will provide an insightful discussion on the citrate-based fluorescent biomaterials, and lead to innovations for the next generation of fluorescent biomaterials and fluorescence-based biomedical technology.


Asunto(s)
Materiales Biocompatibles/química , Citratos/química , Imagen Óptica/métodos , Polímeros/química , Puntos Cuánticos/química
10.
J Biomed Mater Res A ; 103(2): 772-81, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24829094

RESUMEN

Attempts to replicate native tissue architecture have led to the design of biomimetic scaffolds focused on improving functionality. In this study, biomimetic citrate-based poly (octanediol citrate)-click-hydroxyapatite (POC-Click-HA) scaffolds were developed to simultaneously replicate the compositional and architectural properties of native bone tissue while providing immediate structural support for large segmental defects following implantation. Biphasic scaffolds were fabricated with 70% internal phase porosity and various external phase porosities (between 5 and 50%) to mimic the bimodal distribution of cancellous and cortical bone, respectively. Biphasic POC-Click-HA scaffolds displayed compressive strengths up to 37.45 ± 3.83 MPa, which could be controlled through the external phase porosity. The biphasic scaffolds were also evaluated in vivo for the repair of 10-mm long segmental radial defects in rabbits and compared to scaffolds of uniform porosity as well as autologous bone grafts after 5, 10, and 15 weeks of implantation. The results showed that all POC-Click-HA scaffolds exhibited good biocompatibility and extensive osteointegration with host bone tissue. Biphasic scaffolds significantly enhanced new bone formation with higher bone densities in the initial stages after implantation. Biomechanical and histomorphometric analysis supported a similar outcome with biphasic scaffolds providing increased compression strength, interfacial bone ingrowth, and periosteal remodeling in early time points, but were comparable to all experimental groups after 15 weeks. These results confirm the ability of biphasic scaffold architectures to restore bone tissue and physiological functions in the early stages of recovery, and the potential of citrate-based biomaterials in orthopedic applications.


Asunto(s)
Sustitutos de Huesos , Ácido Cítrico , Durapatita , Curación de Fractura/efectos de los fármacos , Fracturas del Radio/terapia , Andamios del Tejido/química , Animales , Sustitutos de Huesos/química , Sustitutos de Huesos/farmacología , Ácido Cítrico/química , Ácido Cítrico/farmacología , Fuerza Compresiva , Durapatita/química , Durapatita/farmacología , Conejos , Fracturas del Radio/metabolismo , Fracturas del Radio/patología
11.
Adv Mater ; 26(12): 1906-11, 2014 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-24375469

RESUMEN

Click chemistry plays a dual role in the design of new citrate-based biodegradable elastomers (CABEs) with greatly improved mechanical strength and easily clickable surfaces for biofunctionalization. This novel chemistry modification strategy is applicable to a number of different types of polymers for improved mechanical properties and biofunctionality.


Asunto(s)
Materiales Biocompatibles/química , Química Clic , Elastómeros/química , Andamios del Tejido/química , Proliferación Celular , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Citratos/química , Módulo de Elasticidad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/fisiología , Células Epiteliales/ultraestructura , Humanos , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Polímeros/química , Resistencia a la Tracción , Venas Umbilicales/efectos de los fármacos , Venas Umbilicales/fisiología , Venas Umbilicales/ultraestructura
12.
Adv Healthc Mater ; 3(2): 182-6, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23983129

RESUMEN

Amphiphilic biodegradable photoluminescent polymers (ABPLPs) composed of a biodegradable fluorescent polymer and methoxy poly (ethyleneglycol) demonstrate intrinsic bright, tunable, and stable fluorescence emission. ABPLP micelles elicit minor cellular toxicity and can be used for cell and tissue imaging both in vitro and in vivo.


Asunto(s)
Diagnóstico por Imagen/métodos , Fluorescencia , Polímeros/química , Sistemas de Liberación de Medicamentos , Micelas
13.
J Biomed Mater Res A ; 102(8): 2521-32, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23996976

RESUMEN

Natural bone apatite crystals, which mediate the development and regulate the load-bearing function of bone, have recently been associated with strongly bound citrate molecules. However, such understanding has not been translated into bone biomaterial design and osteoblast cell culture. In this work, we have developed a new class of biodegradable, mechanically strong, and biocompatible citrate-based polymer blends (CBPBs), which offer enhanced hydroxyapatite binding to produce more biomimetic composites (CBPBHAs) for orthopedic applications. CBPBHAs consist of the newly developed osteoconductive citrate-presenting biodegradable polymers, crosslinked urethane-doped polyester and poly (octanediol citrate), which can be composited with up to 65 wt % hydroxyapatite. CBPBHA networks produced materials with a compressive strength of 116.23 ± 5.37 MPa comparable to human cortical bone (100-230 MPa), and increased C2C12 osterix gene and alkaline phosphatase gene expression in vitro. The promising results above prompted an investigation on the role of citrate supplementation in culture medium for osteoblast culture, which showed that exogenous citrate supplemented into media accelerated the in vitro phenotype progression of MG-63 osteoblasts. After 6 weeks of implantation in a rabbit lateral femoral condyle defect model, CBPBHA composites elicited minimal fibrous tissue encapsulation and were well integrated with the surrounding bone tissues. The development of citrate-presenting CBPBHA biomaterials and preliminary studies revealing the effects of free exogenous citrate on osteoblast culture shows the potential of citrate biomaterials to bridge the gap in orthopedic biomaterial design and osteoblast cell culture in that the role of citrate molecules has previously been overlooked.


Asunto(s)
Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química , Materiales Biomiméticos/química , Materiales Biomiméticos/síntesis química , Ácido Cítrico/química , Ensayo de Materiales/métodos , Fosfatasa Alcalina/metabolismo , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Materiales Biocompatibles/farmacología , Materiales Biomiméticos/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular , Durapatita/química , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Receptores de Hialuranos/metabolismo , Ratones , Oseointegración/efectos de los fármacos , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/enzimología , Polímeros/síntesis química , Polímeros/química , Conejos , Microtomografía por Rayos X
14.
Sci Rep ; 4: 6912, 2014 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-25372769

RESUMEN

Citric acid-based polymer/hydroxyapatite composites (CABP-HAs) are a novel class of biomimetic composites that have recently attracted significant attention in tissue engineering. The objective of this study was to compare the efficacy of using two different CABP-HAs, poly (1,8-octanediol citrate)-click-HA (POC-Click-HA) and crosslinked urethane-doped polyester-HA (CUPE-HA) as an alternative to autologous tissue grafts in the repair of skeletal defects. CABP-HA disc-shaped scaffolds (65 wt.-% HA with 70% porosity) were used as bare implants without the addition of growth factors or cells to renovate 4 mm diameter rat calvarial defects (n = 72, n = 18 per group). Defects were either left empty (negative control group), or treated with CUPE-HA scaffolds, POC-Click-HA scaffolds, or autologous bone grafts (AB group). Radiological and histological data showed a significant enhancement of osteogenesis in defects treated with CUPE-HA scaffolds when compared to POC-Click-HA scaffolds. Both, POC-Click-HA and CUPE-HA scaffolds, resulted in enhanced bone mineral density, trabecular thickness, and angiogenesis when compared to the control groups at 1, 3, and 6 months post-trauma. These results show the potential of CABP-HA bare implants as biocompatible, osteogenic, and off-shelf-available options in the repair of orthopedic defects.


Asunto(s)
Regeneración Ósea/fisiología , Citratos/química , Ácido Cítrico/química , Durapatita/química , Poliésteres/química , Polímeros/química , Cráneo/cirugía , Animales , Materiales Biocompatibles , Densidad Ósea , Trasplante Óseo , Masculino , Neovascularización Fisiológica , Porosidad , Ratas , Ratas Sprague-Dawley , Cráneo/irrigación sanguínea , Cráneo/lesiones , Ingeniería de Tejidos , Andamios del Tejido , Trasplante Autólogo , Uretano/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA