Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 104(3): 422-438, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30773277

RESUMEN

SPONASTRIME dysplasia is an autosomal-recessive spondyloepimetaphyseal dysplasia characterized by spine (spondylar) abnormalities, midface hypoplasia with a depressed nasal bridge, metaphyseal striations, and disproportionate short stature. Scoliosis, coxa vara, childhood cataracts, short dental roots, and hypogammaglobulinemia have also been reported in this disorder. Although an autosomal-recessive inheritance pattern has been hypothesized, pathogenic variants in a specific gene have not been discovered in individuals with SPONASTRIME dysplasia. Here, we identified bi-allelic variants in TONSL, which encodes the Tonsoku-like DNA repair protein, in nine subjects (from eight families) with SPONASTRIME dysplasia, and four subjects (from three families) with short stature of varied severity and spondylometaphyseal dysplasia with or without immunologic and hematologic abnormalities, but no definitive metaphyseal striations at diagnosis. The finding of early embryonic lethality in a Tonsl-/- murine model and the discovery of reduced length, spinal abnormalities, reduced numbers of neutrophils, and early lethality in a tonsl-/- zebrafish model both support the hypomorphic nature of the identified TONSL variants. Moreover, functional studies revealed increased amounts of spontaneous replication fork stalling and chromosomal aberrations, as well as fewer camptothecin (CPT)-induced RAD51 foci in subject-derived cell lines. Importantly, these cellular defects were rescued upon re-expression of wild-type (WT) TONSL; this rescue is consistent with the hypothesis that hypomorphic TONSL variants are pathogenic. Overall, our studies in humans, mice, zebrafish, and subject-derived cell lines confirm that pathogenic variants in TONSL impair DNA replication and homologous recombination-dependent repair processes, and they lead to a spectrum of skeletal dysplasia phenotypes with numerous extra-skeletal manifestations.


Asunto(s)
Inestabilidad Cromosómica , Daño del ADN , Variación Genética , Anomalías Musculoesqueléticas/patología , FN-kappa B/genética , Osteocondrodisplasias/patología , Adolescente , Adulto , Alelos , Animales , Células Cultivadas , Niño , Preescolar , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Estudios de Asociación Genética , Humanos , Ratones , Ratones Noqueados , Anomalías Musculoesqueléticas/genética , Osteocondrodisplasias/genética , Secuenciación del Exoma , Adulto Joven , Pez Cebra
2.
Am J Hum Genet ; 103(6): 968-975, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30414627

RESUMEN

Wiedemann-Rautenstrauch syndrome (WRS), also known as neonatal progeroid syndrome, is a rare disorder of unknown etiology. It has been proposed to be autosomal-recessive and is characterized by variable clinical features, such as intrauterine growth restriction and poor postnatal weight gain, characteristic facial features (triangular appearance to the face, convex nasal profile or pinched nose, and small mouth), widened fontanelles, pseudohydrocephalus, prominent scalp veins, lipodystrophy, and teeth abnormalities. A previous report described a single WRS patient with bi-allelic truncating and splicing variants in POLR3A. Here we present seven additional infants, children, and adults with WRS and bi-allelic truncating and/or splicing variants in POLR3A. POLR3A, the largest subunit of RNA polymerase III, is a DNA-directed RNA polymerase that transcribes many small noncoding RNAs that regulate transcription, RNA processing, and translation. Bi-allelic missense variants in POLR3A have been associated with phenotypes distinct from WRS: hypogonadotropic hypogonadism and hypomyelinating leukodystrophy with or without oligodontia. Our findings confirm the association of bi-allelic POLR3A variants with WRS, expand the clinical phenotype of WRS, and suggest specific POLR3A genotypes associated with WRS and hypomyelinating leukodystrophy.


Asunto(s)
Retardo del Crecimiento Fetal/genética , Variación Genética/genética , Pérdida de Heterocigocidad/genética , Progeria/genética , ARN Polimerasa III/genética , Adolescente , Adulto , Alelos , Preescolar , Femenino , Genotipo , Humanos , Fenotipo , Adulto Joven
3.
Am J Hum Genet ; 102(4): 706-712, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29625025

RESUMEN

The major diseases affecting the thoracic aorta are aneurysms and acute dissections, and pathogenic variants in 11 genes are confirmed to lead to heritable thoracic aortic disease. However, many families in which multiple members have thoracic aortic disease do not have alterations in the known aortopathy genes. Genes highly expressed in the aorta were assessed for rare variants in exome sequencing data from such families, and compound rare heterozygous variants (p.Pro45Argfs∗25 and p.Glu750∗) in LTBP3 were identified in affected members of one family. A homozygous variant (p.Asn678_Gly681delinsThrCys) that introduces an additional cysteine into an epidermal growth factor (EGF)-like domain in the corresponding protein, latent TGF-ß binding protein (LTBP-3), was identified in a second family. Individuals with compound heterozygous or homozygous variants in these families have aneurysms and dissections of the thoracic aorta, as well as aneurysms of the abdominal aorta and other arteries, along with dental abnormalities and short stature. Heterozygous carriers of the p.Asn678_Gly681delinsThrCys variant have later onset of thoracic aortic disease, as well as dental abnormalities. In these families, LTBP3 variants segregated with thoracic aortic disease with a combined LOD score of 3.9. Additionally, heterozygous rare LTBP3 variants were found in individuals with early onset of acute aortic dissections, and some of these variants disrupted LTBP-3 levels or EGF-like domains. When compared to wild-type mice, Ltbp3-/- mice have enlarged aortic roots and ascending aortas. In summary, homozygous LTBP3 pathogenic variants predispose individuals to thoracic aortic aneurysms and dissections, along with the previously described skeletal and dental abnormalities.


Asunto(s)
Aneurisma de la Aorta Torácica/genética , Disección Aórtica/genética , Predisposición Genética a la Enfermedad , Proteínas de Unión a TGF-beta Latente/genética , Mutación/genética , Adulto , Anciano de 80 o más Años , Animales , Presión Sanguínea/genética , Femenino , Homocigoto , Humanos , Masculino , Ratones , Persona de Mediana Edad , Linaje
4.
Am J Hum Genet ; 102(6): 1143-1157, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29805042

RESUMEN

Non-syndromic cleft lip with or without cleft palate (NS-CL/P) is one of the most common human birth defects and is generally considered a complex trait. Despite numerous loci identified by genome-wide association studies, the effect sizes of common variants are relatively small, with much of the presumed genetic contribution remaining elusive. We report exome-sequencing results in 209 people from 72 multi-affected families with pedigree structures consistent with autosomal-dominant inheritance and variable penetrance. Herein, pathogenic variants are described in four genes encoding components of the p120-catenin complex (CTNND1, PLEKHA7, PLEKHA5) and an epithelial splicing regulator (ESRP2), in addition to the known CL/P-associated gene, CDH1, which encodes E-cadherin. The findings were also validated in a second cohort of 497 people with NS-CL/P, comprising small families and singletons with pathogenic variants in these genes identified in 14% of multi-affected families and 2% of the replication cohort of smaller families. Enriched expression of each gene/protein in human and mouse embryonic oro-palatal epithelia, demonstration of functional impact of CTNND1 and ESRP2 variants, and recapitulation of the CL/P spectrum in Ctnnd1 knockout mice support a causative role in CL/P pathogenesis. These data show that primary defects in regulators of epithelial cell adhesion are the most significant contributors to NS-CL/P identified to date and that inherited and de novo single gene variants explain a substantial proportion of NS-CL/P.


Asunto(s)
Cadherinas/genética , Cateninas/genética , Labio Leporino/genética , Fisura del Paladar/genética , Predisposición Genética a la Enfermedad , Mutación/genética , Alelos , Secuencia de Aminoácidos , Animales , Biotinilación , Epitelio/metabolismo , Epitelio/patología , Femenino , Eliminación de Gen , Humanos , Lactante , Recién Nacido , Masculino , Ratones , Hueso Paladar/patología , Linaje , Síndrome , Secuenciación del Exoma , Catenina delta
5.
Am J Hum Genet ; 101(1): 23-36, 2017 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-28625504

RESUMEN

Joubert syndrome (JS) is a recessive neurodevelopmental disorder characterized by hypotonia, ataxia, abnormal eye movements, and variable cognitive impairment. It is defined by a distinctive brain malformation known as the "molar tooth sign" on axial MRI. Subsets of affected individuals have malformations such as coloboma, polydactyly, and encephalocele, as well as progressive retinal dystrophy, fibrocystic kidney disease, and liver fibrosis. More than 35 genes have been associated with JS, but in a subset of families the genetic cause remains unknown. All of the gene products localize in and around the primary cilium, making JS a canonical ciliopathy. Ciliopathies are unified by their overlapping clinical features and underlying mechanisms involving ciliary dysfunction. In this work, we identify biallelic rare, predicted-deleterious ARMC9 variants (stop-gain, missense, splice-site, and single-exon deletion) in 11 individuals with JS from 8 families, accounting for approximately 1% of the disorder. The associated phenotypes range from isolated neurological involvement to JS with retinal dystrophy, additional brain abnormalities (e.g., heterotopia, Dandy-Walker malformation), pituitary insufficiency, and/or synpolydactyly. We show that ARMC9 localizes to the basal body of the cilium and is upregulated during ciliogenesis. Typical ciliopathy phenotypes (curved body shape, retinal dystrophy, coloboma, and decreased cilia) in a CRISPR/Cas9-engineered zebrafish mutant model provide additional support for ARMC9 as a ciliopathy-associated gene. Identifying ARMC9 mutations as a cause of JS takes us one step closer to a full genetic understanding of this important disorder and enables future functional work to define the central biological mechanisms underlying JS and other ciliopathies.


Asunto(s)
Anomalías Múltiples/genética , Proteínas del Dominio Armadillo/genética , Cuerpos Basales/metabolismo , Cerebelo/anomalías , Ciliopatías/genética , Anomalías del Ojo/genética , Enfermedades Renales Quísticas/genética , Mutación/genética , Retina/anomalías , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Anomalías Múltiples/patología , Animales , Proteínas del Dominio Armadillo/metabolismo , Secuencia de Bases , Encéfalo/patología , Cerebelo/patología , Cilios/metabolismo , Ciliopatías/patología , Diagnóstico por Imagen , Exoma/genética , Anomalías del Ojo/patología , Predisposición Genética a la Enfermedad , Humanos , Enfermedades Renales Quísticas/patología , Fenotipo , Retina/patología , Análisis de Secuencia de ADN , Regulación hacia Arriba/genética , Proteínas de Pez Cebra/metabolismo
6.
Hum Mutat ; 40(8): 1156-1171, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31009165

RESUMEN

A genetic basis for otitis media is established, however, the role of rare variants in disease etiology is largely unknown. Previously a duplication variant within A2ML1 was identified as a significant risk factor for otitis media in an indigenous Filipino population and in US children. In this report exome and Sanger sequencing was performed using DNA samples from the indigenous Filipino population, Filipino cochlear implantees, US probands, Finnish, and Pakistani families with otitis media. Sixteen novel, damaging A2ML1 variants identified in otitis media patients were rare or low-frequency in population-matched controls. In the indigenous population, both gingivitis and A2ML1 variants including the known duplication variant and the novel splice variant c.4061 + 1 G>C were independently associated with otitis media. Sequencing of salivary RNA samples from indigenous Filipinos demonstrated lower A2ML1 expression according to the carriage of A2ML1 variants. Sequencing of additional salivary RNA samples from US patients with otitis media revealed differentially expressed genes that are highly correlated with A2ML1 expression levels. In particular, RND3 is upregulated in both A2ML1 variant carriers and high-A2ML1 expressors. These findings support a role for A2ML1 in keratinocyte differentiation within the middle ear as part of otitis media pathology and the potential application of ROCK inhibition in otitis media.


Asunto(s)
Regulación hacia Abajo , Perfilación de la Expresión Génica/métodos , Mutación , Otitis Media/genética , Análisis de Secuencia de ADN/métodos , alfa-Macroglobulinas/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Finlandia , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Lactante , Masculino , Persona de Mediana Edad , Pakistán , Linaje , Filipinas , Análisis de Secuencia de ARN , Transducción de Señal , Estados Unidos , Adulto Joven
7.
Am J Hum Genet ; 99(5): 1005-1014, 2016 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-27745832

RESUMEN

Periodontal Ehlers-Danlos syndrome (pEDS) is an autosomal-dominant disorder characterized by early-onset periodontitis leading to premature loss of teeth, joint hypermobility, and mild skin findings. A locus was mapped to an approximately 5.8 Mb region at 12p13.1 but no candidate gene was identified. In an international consortium we recruited 19 independent families comprising 107 individuals with pEDS to identify the locus, characterize the clinical details in those with defined genetic causes, and try to understand the physiological basis of the condition. In 17 of these families, we identified heterozygous missense or in-frame insertion/deletion mutations in C1R (15 families) or C1S (2 families), contiguous genes in the mapped locus that encode subunits C1r and C1s of the first component of the classical complement pathway. These two proteins form a heterotetramer that then combines with six C1q subunits. Pathogenic variants involve the subunit interfaces or inter-domain hinges of C1r and C1s and are associated with intracellular retention and mild endoplasmic reticulum enlargement. Clinical features of affected individuals in these families include rapidly progressing periodontitis with onset in the teens or childhood, a previously unrecognized lack of attached gingiva, pretibial hyperpigmentation, skin and vascular fragility, easy bruising, and variable musculoskeletal symptoms. Our findings open a connection between the inflammatory classical complement pathway and connective tissue homeostasis.


Asunto(s)
Complemento C1r/genética , Complemento C1s/genética , Síndrome de Ehlers-Danlos/genética , Eliminación de Gen , Mutación Missense , Periodontitis/genética , Adolescente , Adulto , Niño , Preescolar , Mapeo Cromosómico , Cromosomas Humanos Par 12/genética , Síndrome de Ehlers-Danlos/diagnóstico , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Exoma , Femenino , Sitios Genéticos , Humanos , Masculino , Linaje , Periodontitis/diagnóstico , Conformación Proteica , Adulto Joven
8.
Am J Hum Genet ; 90(5): 907-14, 2012 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-22560091

RESUMEN

Auriculocondylar syndrome (ACS) is a rare, autosomal-dominant craniofacial malformation syndrome characterized by variable micrognathia, temporomandibular joint ankylosis, cleft palate, and a characteristic "question-mark" ear malformation. Careful phenotypic characterization of severely affected probands in our cohort suggested the presence of a mandibular patterning defect resulting in a maxillary phenotype (i.e., homeotic transformation). We used exome sequencing of five probands and identified two novel (exclusive to the patient and/or family studied) missense mutations in PLCB4 and a shared mutation in GNAI3 in two unrelated probands. In confirmatory studies, three additional novel PLCB4 mutations were found in multigenerational ACS pedigrees. All mutations were confirmed by Sanger sequencing, were not present in more than 10,000 control chromosomes, and resulted in amino-acid substitutions located in highly conserved protein domains. Additionally, protein-structure modeling demonstrated that all ACS substitutions disrupt the catalytic sites of PLCB4 and GNAI3. We suggest that PLCB4 and GNAI3 are core signaling molecules of the endothelin-1-distal-less homeobox 5 and 6 (EDN1-DLX5/DLX6) pathway. Functional studies demonstrated a significant reduction in downstream DLX5 and DLX6 expression in ACS cases in assays using cultured osteoblasts from probands and controls. These results support the role of the previously implicated EDN1-DLX5/6 pathway in regulating mandibular specification in other species, which, when disrupted, results in a maxillary phenotype. This work defines the molecular basis of ACS as a homeotic transformation (mandible to maxilla) in humans.


Asunto(s)
Enfermedades del Oído/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Mutación , Fosfolipasa C beta/genética , Secuencia de Aminoácidos , Estudios de Cohortes , Oído/anomalías , Oído/fisiopatología , Enfermedades del Oído/fisiopatología , Endotelina-1/genética , Endotelina-1/metabolismo , Exoma , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Datos de Secuencia Molecular , Linaje , Fenotipo , Fosfolipasa C beta/metabolismo , Conformación Proteica , Análisis de Secuencia de ARN
9.
bioRxiv ; 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36798371

RESUMEN

Objectives: Transcript sequencing of patient derived samples has been shown to improve the diagnostic yield for solving cases of likely Mendelian disorders, yet the added benefit of full-length long-read transcript sequencing is largely unexplored. Methods: We applied short-read and full-length isoform cDNA sequencing and mitochondrial functional studies to a patient-derived fibroblast cell line from an individual with neuropathy that previously lacked a molecular diagnosis. Results: We identified an intronic homozygous MFN2 c.600-31T>G variant that disrupts a branch point critical for intron 6 spicing. Full-length long-read isoform cDNA sequencing after treatment with a nonsense-mediated mRNA decay (NMD) inhibitor revealed that this variant creates five distinct altered splicing transcripts. All five altered splicing transcripts have disrupted open reading frames and are subject to NMD. Furthermore, a patient-derived fibroblast line demonstrated abnormal lipid droplet formation, consistent with MFN2 dysfunction. Although correctly spliced full-length MFN2 transcripts are still produced, this branch point variant results in deficient MFN2 protein levels and autosomal recessive Charcot-Marie-Tooth disease, axonal, type 2A (CMT2A). Discussion: This case highlights the utility of full-length isoform sequencing for characterizing the molecular mechanism of undiagnosed rare diseases and expands our understanding of the genetic basis for CMT2A.

10.
Neurol Genet ; 9(5): e200090, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37560121

RESUMEN

Objectives: Transcript sequencing of patient-derived samples has been shown to improve the diagnostic yield for solving cases of suspected Mendelian conditions, yet the added benefit of full-length long-read transcript sequencing is largely unexplored. Methods: We applied short-read and full-length transcript sequencing and mitochondrial functional studies to a patient-derived fibroblast cell line from an individual with neuropathy that previously lacked a molecular diagnosis. Results: We identified an intronic homozygous MFN2 c.600-31T>G variant that disrupts the branch point critical for intron 6 splicing. Full-length long-read isoform complementary DNA (cDNA) sequencing after treatment with a nonsense-mediated mRNA decay (NMD) inhibitor revealed that this variant creates 5 distinct altered splicing transcripts. All 5 altered splicing transcripts have disrupted open reading frames and are subject to NMD. Furthermore, a patient-derived fibroblast line demonstrated abnormal lipid droplet formation, consistent with MFN2 dysfunction. Although correctly spliced full-length MFN2 transcripts are still produced, this branch point variant results in deficient MFN2 levels and autosomal recessive Charcot-Marie-Tooth disease, axonal, type 2A (CMT2A). Discussion: This case highlights the utility of full-length isoform sequencing for characterizing the molecular mechanism of undiagnosed rare diseases and expands our understanding of the genetic basis for CMT2A.

11.
HGG Adv ; 2(1)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33791682

RESUMEN

The Joubert-Meckel syndrome spectrum is a continuum of recessive ciliopathy conditions caused by primary cilium dysfunction. The primary cilium is a microtubule-based, antenna-like organelle that projects from the surface of most human cell types, allowing them to respond to extracellular signals. The cilium is partitioned from the cell body by the transition zone, a known hotspot for ciliopathy-related proteins. Despite years of Joubert syndrome (JBTS) gene discovery, the genetic cause cannot be identified in up to 30% of individuals with JBTS, depending on the cohort, sequencing method, and criteria for pathogenic variants. Using exome and targeted sequencing of 655 families with JBTS, we identified three individuals from two families harboring biallelic, rare, predicted-deleterious missense TMEM218 variants. Via MatchMaker Exchange, we identified biallelic TMEM218 variants in four additional families with ciliopathy phenotypes. Of note, four of the six families carry missense variants affecting the same highly conserved amino acid position 115. Clinical features included the molar tooth sign (N = 2), occipital encephalocele (N = 5, all fetuses), retinal dystrophy (N = 4, all living individuals), polycystic kidneys (N = 2), and polydactyly (N = 2), without liver involvement. Combined with existing functional data linking TMEM218 to ciliary transition zone function, our human genetic data make a strong case for TMEM218 dysfunction as a cause of ciliopathy phenotypes including JBTS with retinal dystrophy and Meckel syndrome. Identifying all genetic causes of the Joubert-Meckel spectrum enables diagnostic testing, prognostic and recurrence risk counseling, and medical monitoring, as well as work to delineate the underlying biological mechanisms and identify targets for future therapies.

12.
Sci Rep ; 10(1): 15035, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32929111

RESUMEN

Otitis media (OM), a very common disease in young children, can result in hearing loss. In order to potentially replicate previously reported associations between OM and PLG, exome and Sanger sequencing, RNA-sequencing of saliva and middle ear samples, 16S rRNA sequencing, molecular modeling, and statistical analyses including transmission disequilibrium tests (TDT) were performed in a multi-ethnic cohort of 718 families and simplex cases with OM. We identified four rare PLG variants c.112A > G (p.Lys38Glu), c.782G > A (p.Arg261His), c.1481C > T (p.Ala494Val) and c.2045 T > A (p.Ile682Asn), and one common variant c.1414G > A (p.Asp472Asn). However TDT analyses for these PLG variants did not demonstrate association with OM in 314 families. Additionally PLG expression is very low or absent in normal or diseased middle ear in mouse and human, and salivary expression and microbial α-diversity were non-significant in c.1414G > A (p.Asp472Asn) carriers. Based on molecular modeling, the novel rare variants particularly c.782G > A (p.Arg261His) and c.2045 T > A (p.Ile682Asn) were predicted to affect protein structure. Exploration of other potential disease mechanisms will help elucidate how PLG contributes to OM susceptibility in humans. Our results underline the importance of following up findings from genome-wide association through replication studies, preferably using multi-omic datasets.


Asunto(s)
Mutación Missense , Otitis Media/genética , Plasminógeno/genética , Animales , Oído Medio/metabolismo , Oído Medio/microbiología , Femenino , Genómica/métodos , Humanos , Masculino , Ratones , Microbiota , Otitis Media/microbiología , Otitis Media/patología , Linaje , Plasminógeno/metabolismo , Polimorfismo de Nucleótido Simple , Saliva/metabolismo
13.
Genes (Basel) ; 8(12)2017 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-29232904

RESUMEN

Whole exome sequence analysis was performed in a Swedish mother-father-affected proband trio with a phenotype characterized by progressive retinal degeneration with congenital nystagmus, profound congenital hearing impairment, primary amenorrhea, agenesis of the corpus callosum, and liver disease. A homozygous variant c.806T > C, p.(F269S) in the tyrosyl-tRNA synthetase gene (YARS) was the only identified candidate variant consistent with autosomal recessive inheritance. Mutations in YARS have previously been associated with both autosomal dominant Charcot-Marie-Tooth syndrome and a recently reported autosomal recessive multiorgan disease. Herein, we propose that mutations in YARS underlie another clinical phenotype adding a second variant of the disease, including retinitis pigmentosa and deafness, to the spectrum of YARS-associated disorders.

14.
Int J Dermatol ; 56(12): 1406-1413, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29130490

RESUMEN

BACKGROUND: Genodermatoses represent genetic anomalies of skin tissues including hair follicles, sebaceous glands, eccrine glands, nails, and teeth. Ten consanguineous families segregating various genodermatosis phenotypes were investigated in the present study. METHODS: Homozygosity mapping, exome, and Sanger sequencing were employed to search for the disease-causing variants in the 10 families. RESULTS: Exome sequencing identified seven homozygous sequence variants in different families, including: c.27delT in FERMT1; c.836delA in ABHD5; c.2453C>T in ERCC5; c.5314C>T in COL7A1; c.1630C>T in ALOXE3; c.502C>T in PPOX; and c.10G>T in ALDH3A2. Sanger sequencing revealed three homozygous variants: c.1718 + 2A>G in FERMT1; c.10459A>T in FLG; and c.92delT in the KRT14 genes as the underlying genetic cause of skin phenotypes. CONCLUSION: This study supports the use of exome sequencing as a powerful, efficient tool for identifying genes that underlie rare monogenic skin disorders.


Asunto(s)
Enfermedades Raras/genética , Enfermedades Cutáneas Genéticas/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/genética , Aldehído Oxidorreductasas/genética , Vesícula/genética , Colágeno Tipo VII/genética , Consanguinidad , Análisis Mutacional de ADN , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Epidermólisis Ampollosa/genética , Epidermólisis Ampollosa Distrófica/genética , Epidermólisis Ampollosa Simple/genética , Exoma , Femenino , Proteínas Filagrina , Flavoproteínas/genética , Homocigoto , Humanos , Mutación INDEL , Eritrodermia Ictiosiforme Congénita/genética , Ictiosis Vulgar/genética , Ictiosis Lamelar/genética , Proteínas de Filamentos Intermediarios/genética , Queratina-14/genética , Errores Innatos del Metabolismo Lipídico/genética , Lipooxigenasa/genética , Masculino , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Enfermedades Musculares/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Linaje , Enfermedades Periodontales/genética , Fenotipo , Trastornos por Fotosensibilidad/genética , Porfiria Variegata/genética , Protoporfirinógeno-Oxidasa/genética , Síndrome de Sjögren-Larsson/genética , Factores de Transcripción/genética , Xerodermia Pigmentosa/genética
15.
Eur J Hum Genet ; 24(8): 1223-7, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26695873

RESUMEN

Alopecia with mental retardation (APMR) is a very rare disorder. In this study, we report on a consanguineous Pakistani family (AP91) with mild-to-moderate intellectual disability, adolescent alopecia and dentogingival abnormalities. Using homozygosity mapping, linkage analysis and exome sequencing, we identified a novel rare missense variant c.898G>A (p.(Glu300Lys)) in ITGB6, which co-segregates with the phenotype within the family and is predicted to be deleterious. Structural modeling shows that Glu300 lies in the ß-propeller domain, and is surrounded by several residues that are important for heterodimerization with α integrin. Previous studies showed that ITGB6 variants can cause amelogenesis imperfecta in humans, but patients from family AP91 who are homozygous for the c.898G>A variant present with neurological and dermatological features, indicating a role for ITGB6 beyond enamel formation. Our study demonstrates that a rare deleterious variant within ITGB6 causes not only dentogingival anomalies but also intellectual disability and alopecia.


Asunto(s)
Alopecia/genética , Cadenas beta de Integrinas/genética , Discapacidad Intelectual/genética , Fenotipo , Anomalías Dentarias/genética , Adolescente , Adulto , Alopecia/diagnóstico , Niño , Femenino , Humanos , Cadenas beta de Integrinas/química , Discapacidad Intelectual/diagnóstico , Masculino , Mutación Missense , Linaje , Dominios Proteicos , Síndrome , Anomalías Dentarias/diagnóstico
16.
Am J Med Genet ; 108(4): 281-4, 2002 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-11920831

RESUMEN

Mixed clefting type (MCT) is the rare occurrence of cleft lip, with or without cleft palate, and cleft palate alone in the same pedigree. Here we present a family with Rapp-Hodgkin syndrome (RHS) that manifests MCT, and use this rare finding to suggest that RHS may be related not only to phenotypically similar syndromes, but seemingly dissimilar ones as well. RHS has obvious phenotypic overlap with other ectodermal dysplasia-clefting syndromes (EDCS), such as ectrodactyly-ectodermal dysplasia-clefting syndrome (EEC) and ankyloblepharon-ectodermal dysplasia-clefting syndrome (AEC), all of which show MCT. MCT is also found in the allelic disorders van der Woude syndrome (VDW) and popliteal-pterygium syndrome (PPS). Therefore, while VDW and PPS have little clinical overlap with the EDCS, the common finding of MCT may indicate closer relationships at the developmental or genetic level.


Asunto(s)
Anomalías Múltiples/patología , Labio Leporino/patología , Displasia Ectodérmica/patología , Anomalías Dentarias , Anomalías Múltiples/genética , Niño , Fisura del Paladar/patología , Salud de la Familia , Femenino , Humanos , Masculino , Linaje , Síndrome
17.
Orphanet J Rare Dis ; 4: 11, 2009 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-19309503

RESUMEN

Sheldon-Hall syndrome (SHS) is a rare multiple congenital contracture syndrome characterized by contractures of the distal joints of the limbs, triangular face, downslanting palpebral fissures, small mouth, and high arched palate. Epidemiological data for the prevalence of SHS are not available, but less than 100 cases have been reported in the literature. Other common clinical features of SHS include prominent nasolabial folds, high arched palate, attached earlobes, mild cervical webbing, short stature, severe camptodactyly, ulnar deviation, and vertical talus and/or talipes equinovarus. Typically, the contractures are most severe at birth and non-progressive. SHS is inherited in an autosomal dominant pattern but about half the cases are sporadic. Mutations in either MYH3, TNNI2, or TNNT3 have been found in about 50% of cases. These genes encode proteins of the contractile apparatus of fast twitch skeletal muscle fibers. The diagnosis of SHS is based on clinical criteria. Mutation analysis is useful to distinguish SHS from arthrogryposis syndromes with similar features (e.g. distal arthrogryposis 1 and Freeman-Sheldon syndrome). Prenatal diagnosis by ultrasonography is feasible at 18-24 weeks of gestation. If the family history is positive and the mutation is known in the family, prenatal molecular genetic diagnosis is possible. There is no specific therapy for SHS. However, patients benefit from early intervention with occupational and physical therapy, serial casting, and/or surgery. Life expectancy and cognitive abilities are normal.


Asunto(s)
Anomalías Múltiples , Artrogriposis , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/epidemiología , Anomalías Múltiples/genética , Anomalías Múltiples/fisiopatología , Artrogriposis/diagnóstico , Artrogriposis/epidemiología , Artrogriposis/genética , Artrogriposis/fisiopatología , Niño , Contractura/diagnóstico , Contractura/epidemiología , Contractura/genética , Contractura/fisiopatología , Proteínas del Citoesqueleto/genética , Cara/anomalías , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Músculo Esquelético/fisiopatología , Fenotipo , Síndrome , Troponina T/genética
18.
Am J Med Genet A ; 140(22): 2387-93, 2006 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-17041932

RESUMEN

Trismus-pseudocamptodactyly syndrome (TPS) is a rare autosomal dominant distal arthrogryposis (DA) characterized by an inability to open the mouth fully (trismus) and an unusual camptodactyly of the fingers that is apparent only upon dorsiflexion of the wrist (i.e., pseudocamptodactyly). TPS is also known as Dutch-Kentucky syndrome because a Dutch founder mutation is presumed to be the origin of TPS cases in the Southeast US, including Kentucky. To date only a single mutation, p.R674Q, in MYH8 has been reported to cause TPS. Several individuals with this mutation also had a so-called "variant" of Carney complex, suggesting that the pathogenesis of TPS and Carney complex might be shared. We screened MYH8 in four TPS pedigrees, including the original Dutch family in which TPS was reported. All four TPS families shared the p.R674Q substitution. However, haplotype analysis revealed that this mutation has arisen independently in North American and European TPS pedigrees. None of the individuals with TPS studied had features of Carney complex, and p.R674Q was not found in 49 independent cases of Carney complex that were screened. Our findings show that distal arthrogryposis syndromes share a similar pathogenesis and are, in general, caused by disruption of the contractile complex of muscle.


Asunto(s)
Artrogriposis/genética , Mutación Missense , Cadenas Pesadas de Miosina/genética , Trismo/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Secuencia de Bases , Secuencia Conservada , ADN/genética , Femenino , Genes Dominantes , Haplotipos , Humanos , Masculino , Modelos Moleculares , Cadenas Pesadas de Miosina/química , Linaje , Homología de Secuencia de Aminoácido , Síndrome
19.
Am J Med Genet A ; 138A(2): 146-9, 2005 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-16114047

RESUMEN

We report on a new patient with clinical findings consistent with acro-dermato-ungual-lacrimal-tooth (ADULT) syndrome. The child had sparse hair, extensive freckling, lacrimal duct stenosis, oligodontia, dystrophic nails, reduced sweating, and bilateral athelia. Examination of his hands showed ulnar ray hypoplasia with bilateral fifth finger brachydactyly and camptodactyly. He also had surgical repair of an imperforate anus. Mutation analysis of TP63 showed a single nucleotide substitution, c.G518A, predicting a novel missense mutation, p.V114M in exon 4. This is the third mutation to be reported in TP63 in ADULT syndrome.


Asunto(s)
Anomalías Múltiples/genética , Displasia Ectodérmica/patología , Dedos/anomalías , Obstrucción del Conducto Lagrimal/patología , Mutación Missense , Fosfoproteínas/genética , Transactivadores/genética , Anomalías Múltiples/patología , Secuencia de Bases , Análisis Mutacional de ADN , Proteínas de Unión al ADN , Diagnóstico Diferencial , Femenino , Genes Supresores de Tumor , Humanos , Masculino , Glándulas Mamarias Humanas/patología , Linaje , Fenotipo , Síndrome , Anomalías Dentarias , Factores de Transcripción , Proteínas Supresoras de Tumor , Cúbito/anomalías
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA