Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Neurooncol ; 136(3): 475-484, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29170909

RESUMEN

Despite the advances in imaging, surgery and radiotherapy, the majority of patients with brainstem gliomas die within 2 years after initial diagnosis. Factors that contribute to the dismal prognosis of these patients include the infiltrative nature and anatomic location in an eloquent area of the brain, which prevents total surgical resection and the presence of the blood-brain barrier (BBB), which reduces the distribution of systemically administered agents. The development of new therapeutic approaches which can circumvent the BBB is a potential path to improve outcomes for these children. Convection-enhanced delivery (CED) and intranasal delivery (IND) are strategies that permit direct drug delivery into the central nervous system and are an alternative to intravenous injection (IV). We treated rats bearing human brainstem tumor xenografts with nanoliposomal irinotecan (CPT-11) using CED, IND, and IV. A single treatment of CED irinotecan had a similar effect on overall survival as multiple treatments by IV route. IND CPT-11 showed significantly increased survival of animals with brainstem tumors, and demonstrated the promise of this non-invasive approach of drug delivery bypassing the BBB when combined with nanoliposomal chemotherapy. Our results indicated that using CED and IND of nanoliposomal therapy increase likelihood of practical therapeutic approach for the treatment of brainstem gliomas.


Asunto(s)
Neoplasias del Tronco Encefálico/tratamiento farmacológico , Irinotecán/administración & dosificación , Inhibidores de Topoisomerasa I/administración & dosificación , Administración Intranasal , Animales , Neoplasias del Tronco Encefálico/mortalidad , Línea Celular Tumoral , Convección , Portadores de Fármacos , Humanos , Irinotecán/farmacocinética , Liposomas , Masculino , Nanoestructuras , Ratas , Inhibidores de Topoisomerasa I/farmacocinética , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Neuroimage ; 47 Suppl 2: T27-35, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19095069

RESUMEN

We are developing a method for real-time magnetic resonance imaging (MRI) visualization of convection-enhanced delivery (CED) of adeno-associated viral vectors (AAV) to the primate brain. By including gadolinium-loaded liposomes (GDL) with AAV, we can track the convective movement of viral particles by continuous monitoring of distribution of surrogate GDL. In order to validate this approach, we infused two AAV (AAV1-GFP and AAV2-hAADC) into three different regions of non-human primate brain (corona radiata, putamen, and thalamus). The procedure was tolerated well by all three animals in the study. The distribution of GFP determined by immunohistochemistry in both brain regions correlated closely with distribution of GDL determined by MRI. Co-distribution was weaker with AAV2-hAADC, although in vivo PET scanning with FMT for AADC activity correlated well with immunohistochemistry of AADC. Although this is a relatively small study, it appears that AAV1 correlates better with MRI-monitored delivery than does AAV2. It seems likely that the difference in distribution may be due to differences in tissue specificity of the two serotypes.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/virología , Dependovirus/genética , Técnicas de Transferencia de Gen , Vectores Genéticos , Animales , Descarboxilasas de Aminoácido-L-Aromático/genética , Descarboxilasas de Aminoácido-L-Aromático/metabolismo , Encéfalo/fisiología , Gadolinio , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Inmunohistoquímica , Liposomas , Macaca mulatta , Imagen por Resonancia Magnética , Masculino , Tomografía de Emisión de Positrones , Putamen/virología , Tálamo/virología
3.
J Neurooncol ; 95(2): 185-197, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19466380

RESUMEN

Convection-enhanced delivery (CED) of highly stable PEGylated liposomes encapsulating chemotherapeutic drugs has previously been effective against malignant glioma xenografts. We have developed a novel, convectable non-PEGylated liposomal formulation that can be used to encapsulate both the topoisomerase I inhibitor topotecan (topoCED) and paramagnetic gadodiamide (gadoCED), providing an ideal basis for real-time monitoring of drug distribution. Tissue retention of topoCED following single CED administration was significantly improved relative to free topotecan. At a dose of 10 microg (0.5 mg/ml), topoCED had a half-life in brain of approximately 1 day and increased the area under the concentration-time curve (AUC) by 28-fold over free topotecan (153.8 vs. 5.5 microg day/g). The combination of topoCED and gadoCED was found to co-convect well in both naïve rat brain and malignant glioma xenografts (correlation coefficients 0.97-0.99). In a U87MG cell assay, the 50% inhibitory concentration (IC(50)) of topoCED was approximately 0.8 microM at 48 and 72 h; its concentration-time curves were similar to free topotecan and unaffected by gadoCED. In a U87MG intracranial rat xenograft model, a two-dose CED regimen of topoCED co-infused with gadoCED greatly increased median overall survival at dose levels of 0.5 mg/ml (29.5 days) and 1.0 mg/ml (33.0 days) vs. control (20.0 days; P < 0.0001 for both comparisons). TopoCED at higher concentrations (1.6 mg/ml) co-infused with gadoCED showed no evidence of histopathological changes attributable to either agent. The positive results of tissue pharmacokinetics, co-convection, cytotoxicity, efficacy, and lack of toxicity of topoCED in a clinically meaningful dose range, combined with an ideal matched-liposome paramagnetic agent, gadoCED, implicates further clinical applications of this therapy in the treatment of malignant glioma.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Gadolinio DTPA/administración & dosificación , Glioblastoma/tratamiento farmacológico , Polietilenglicoles/química , Topotecan/administración & dosificación , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Neoplasias Encefálicas/patología , Supervivencia Celular/efectos de los fármacos , Medios de Contraste/administración & dosificación , Medios de Contraste/farmacocinética , Convección , Gadolinio DTPA/farmacocinética , Glioblastoma/patología , Humanos , Liposomas , Masculino , Ratas , Ratas Sprague-Dawley , Tasa de Supervivencia , Distribución Tisular , Topotecan/farmacocinética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
4.
J Neurosurg ; 109(5): 867-73, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18976076

RESUMEN

OBJECT: The characteristics of polyethylene glycol-coated liposomal doxorubicin (PLD), the only liposomal drug now clinically available for intravenous injection, were investigated after convection-enhanced delivery (CED) into the rat brain parenchyma. METHODS: The distribution, tissue retention, and toxicity profile were evaluated after CED into the rat brain parenchyma. The antitumor efficacy was also determined in rodent intracranial U-251MG and U-87MG glioma models. RESULTS: Convection-enhanced delivery of PLD achieved wider distributions and delayed onset of toxicity in the brain parenchyma compared with CED of free doxorubicin infusion. Fluorescence generated from doxorubicin infused as PLD was detected until at least 30 days after infusion. Local toxicity was not observed when a 10% dilution of the commercially available PLD solution was used (0.2 mg/ml doxorubicin), but was significant at higher concentrations. Results after 10% PLD was delivered locally with CED demonstrated significant survival prolongation in both intracranial U-251MG and U-87MG xenograft models. CONCLUSIONS: Convection-enhanced delivery of PLD achieved extensive tissue distribution and sustained drug release. Convection-enhanced delivery of PLD is a promising chemotherapy for the treatment of malignant gliomas.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Convección , Doxorrubicina/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Glioma/tratamiento farmacológico , Polietilenglicoles , Animales , Antibióticos Antineoplásicos/administración & dosificación , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Glioma/patología , Humanos , Masculino , Ratas , Ratas Endogámicas F344 , Ratas Sprague-Dawley , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
5.
J Neurosurg ; 109(5): 874-80, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18976077

RESUMEN

OBJECT: The authors have shown that convection-enhanced delivery (CED) of gadoteridol-loaded liposomes (GDLs) into different regions of normal monkey brain results in predictable, widespread distribution of this tracking agent as detected by real-time MR imaging. They also have found that this tracking technique allows monitoring of the distribution of similar nanosized agents such as therapeutic liposomes and viral vectors. A limitation of this procedure is the unexpected leakage of liposomes out of targeted parenchyma or malignancies into sulci and ventricles. The aim of the present study was to evaluate the efficacy of CED after the onset of these types of leakage. METHODS: The authors documented this phenomenon in a study of 5 nonhuman primates and 7 canines, comprising 54 CED infusion sessions. Approximately 20% of these infusions resulted in leakage into cerebral ventricles or sulci. All of the infusions and leakage events were monitored with real-time MR imaging. The authors created volume-distributed versus volume-infused graphs for each infusion session. These graphs revealed the rate of distribution of GDL over the course of each infusion and allowed the authors to evaluate the progress of CED before and after leakage. RESULTS: The distribution of therapeutics within the target structure ceased to increase or resulted in significant attenuation after the onset of leakage. CONCLUSIONS: An analysis of the cases in this study revealed that leakage undermines the efficacy of CED. These findings reiterate the importance of real-time MR imaging visualization during CED to ensure an accurate, robust distribution of therapeutic agents.


Asunto(s)
Encéfalo/fisiopatología , Medios de Contraste/administración & dosificación , Convección , Sistemas de Liberación de Medicamentos/métodos , Compuestos Heterocíclicos/administración & dosificación , Compuestos Organometálicos/administración & dosificación , Animales , Encéfalo/patología , Medios de Contraste/farmacocinética , Perros , Gadolinio , Compuestos Heterocíclicos/farmacocinética , Liposomas/farmacocinética , Macaca fascicularis , Imagen por Resonancia Magnética , Masculino , Modelos Animales , Compuestos Organometálicos/farmacocinética
6.
J Neurosurg ; 108(5): 989-98, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18447717

RESUMEN

OBJECT: Many factors relating to the safety and efficacy of convection-enhanced delivery (CED) into intracranial tumors are poorly understood. To investigate these factors further and establish a more clinically relevant large animal model, with the potential to investigate CED in large, spontaneous tumors, the authors developed a magnetic resonance (MR) imaging-compatible system for CED of liposomal nanoparticles into the canine brain, incorporating real-time MR imaging. Additionally any possible toxicity of liposomes containing Gd and the chemotherapeutic agent irinotecan (CPT-11) was assessed following direct intraparenchymal delivery. METHODS: Four healthy laboratory dogs were infused with liposomes containing Gd, rhodamine, or CPT-11. Convection-enhanced delivery was monitored in real time by sequential MR imaging, and the volumes of distribution were calculated from MR images and histological sections. Assessment of any toxicity was based on clinical and histopathological evaluation. Convection-enhanced delivery resulted in robust volumes of distribution in both gray and white matter, and real-time MR imaging allowed accurate calculation of volumes and pathways of distribution. RESULTS: Infusion variability was greatest in the gray matter, and was associated with leakage into ventricular or subarachnoid spaces. Complications were minimal and included mild transient proprioceptive deficits, focal hemorrhage in 1 dog, and focal, mild perivascular, nonsuppurative encephalitis in 1 dog. CONCLUSIONS: Convection-enhanced delivery of liposomal Gd/CPT-11 is associated with minimal adverse effects in a large animal model, and further assessment for use in clinical patients is warranted. Future studies investigating real-time monitored CED in spontaneous gliomas in canines are feasible and will provide a unique, clinically relevant large animal translational model for testing this and other therapeutic strategies.


Asunto(s)
Camptotecina/análogos & derivados , Imagen por Resonancia Magnética , Animales , Encéfalo/metabolismo , Camptotecina/administración & dosificación , Camptotecina/farmacocinética , Camptotecina/toxicidad , Perros , Monitoreo del Ambiente , Femenino , Fluorescencia , Gadolinio , Irinotecán , Liposomas , Nanopartículas
7.
Cancer Res ; 66(5): 2801-6, 2006 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-16510602

RESUMEN

We hypothesized that combining convection-enhanced delivery (CED) with a novel, highly stable nanoparticle/liposome containing CPT-11 (nanoliposomal CPT-11) would provide a dual drug delivery strategy for brain tumor treatment. Following CED in rat brains, tissue retention of nanoliposomal CPT-11 was greatly prolonged, with >20% injected dose remaining at 12 days for all doses. Tissue residence was dose dependent, with doses of 60 microg (3 mg/mL), 0.8 mg (40 mg/mL), and 1.6 mg (80 mg/mL) resulting in tissue half-life (t(1/2)) of 6.7, 10.7, and 19.7 days, respectively. In contrast, CED of free CPT-11 resulted in rapid drug clearance (tissue t(1/2) = 0.3 day). At equivalent CED doses, nanoliposomal CPT-11 increased area under the time-concentration curve by 25-fold and tissue t(1/2) by 22-fold over free CPT-11; CED in intracranial U87 glioma xenografts showed even longer tumor retention (tissue t(1/2) = 43 days). Plasma levels were undetectable following CED of nanoliposomal CPT-11. Importantly, prolonged exposure to nanoliposomal CPT-11 resulted in no measurable central nervous system (CNS) toxicity at any dose tested (0.06-1.6 mg/rat), whereas CED of free CPT-11 induced severe CNS toxicity at 0.4 mg/rat. In the intracranial U87 glioma xenograft model, a single CED infusion of nanoliposomal CPT-11 at 1.6 mg resulted in significantly improved median survival (>100 days) compared with CED of control liposomes (19.5 days; P = 4.9 x 10(-5)) or free drug (28.5 days; P = 0.011). We conclude that CED of nanoliposomal CPT-11 greatly prolonged tissue residence while also substantially reducing toxicity, resulting in a highly effective treatment strategy in preclinical brain tumor models.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Camptotecina/análogos & derivados , Sistemas de Liberación de Medicamentos/métodos , Animales , Neoplasias Encefálicas/metabolismo , Camptotecina/administración & dosificación , Camptotecina/química , Camptotecina/farmacocinética , Camptotecina/toxicidad , Línea Celular Tumoral , Convección , Humanos , Irinotecán , Liposomas/administración & dosificación , Liposomas/química , Liposomas/farmacocinética , Liposomas/toxicidad , Masculino , Nanoestructuras/química , Nanoestructuras/toxicidad , Fosfolípidos/administración & dosificación , Fosfolípidos/química , Fosfolípidos/farmacocinética , Fosfolípidos/toxicidad , Ratas , Ratas Sprague-Dawley , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Neuro Oncol ; 9(1): 20-8, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17018695

RESUMEN

Despite multimodal treatment options, the response and survival rates for patients with malignant gliomas remain dismal. Clinical trials with convection-enhanced delivery (CED) have recently opened a new window in neuro-oncology to the direct delivery of chemotherapeutics to the CNS, circumventing the blood-brain barrier and reducing systemic side effects. Our previous CED studies with liposomal chemotherapeutics have shown promising antitumor activity in rodent brain tumor models. In this study, we evaluated a combination of nanoliposomal topotecan (nLs-TPT) and pegylated liposomal doxorubicin (PLD) to enhance efficacy in our brain tumor models, and to establish a CED treatment capable of improving survival from malignant brain tumors. Both liposomal drugs decreased key enzymes involved in tumor cell replication in vitro. Synergistic effects of nLs-TPT and PLD on U87MG cell death were found. The combination displayed excellent efficacy in a CED-based survival study 10 days after tumor cell implantation. Animals in the control group and those in singleagent groups had a median survival of less than 30 days, whereas the combination group experienced a median survival of more than 90 days. We conclude that CED of two liposomal chemotherapeutics (nLs-TPT and PLD) may be an effective treatment option for malignant gliomas.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Doxorrubicina/análogos & derivados , Sistemas de Liberación de Medicamentos , Glioblastoma/tratamiento farmacológico , Polietilenglicoles/administración & dosificación , Inhibidores de Topoisomerasa I , Inhibidores de Topoisomerasa II , Topotecan/administración & dosificación , Animales , Antineoplásicos/administración & dosificación , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Doxorrubicina/administración & dosificación , Glioblastoma/patología , Humanos , Masculino , Ratas , Ratas Desnudas , Ratas Sprague-Dawley , Tasa de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Neuro Oncol ; 9(4): 393-403, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17652269

RESUMEN

We have previously shown that convection-enhanced delivery (CED) of highly stable nanoparticle/liposome agents encapsulating chemotherapeutic drugs is effective against intracranial rodent brain tumor xenografts. In this study, we have evaluated the combination of a newly developed nanoparticle/liposome containing the topoisomerase I inhibitor CPT-11 (nanoliposomal CPT-11 [nLs-CPT-11]), and PEGylated liposomal doxorubicin (Doxil) containing the topoisomerase II inhibitor doxorubicin. Both drugs were detectable in the CNS for more than 36 days after a single CED application. Tissue half-life was 16.7 days for nLs-CPT-11 and 10.9 days for Doxil. The combination of the two agents produced synergistic cytotoxicity in vitro. In vivo in U251MG and U87MG intracranial rodent xenograft models, CED of the combination was also more efficacious than either agent used singly. Analysis of the parameters involved in this approach indicated that tissue pharmacokinetics, tumor microanatomy, and biochemical interactions of the drugs all contributed to the therapeutic efficacy observed. These findings have implications for further clinical applications of CED-based treatment of brain tumors.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Camptotecina/análogos & derivados , Doxorrubicina/administración & dosificación , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Camptotecina/administración & dosificación , Camptotecina/efectos adversos , Camptotecina/farmacocinética , Línea Celular Tumoral , Convección , Doxorrubicina/efectos adversos , Doxorrubicina/farmacocinética , Sinergismo Farmacológico , Semivida , Humanos , Irinotecán , Liposomas , Masculino , Nanopartículas , Trasplante de Neoplasias , Ratas , Ratas Sprague-Dawley , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Neuro Oncol ; 8(3): 205-14, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16723630

RESUMEN

Treatment of malignant gliomas represents one of the most formidable challenges in oncology. The combination of surgery, radiation, and chemotherapy yields median survivals of less than one year. Here we demonstrate the use of a minimally invasive surgical technique, convection-enhanced delivery (CED), for local administration of a novel nanoparticle liposome containing topotecan. CED of this liposomal topotecan (Ls-TPT) resulted in extended brain tissue retention (t1/2 = 1.5 days), whereas free topotecan was rapidly cleared (t1/2 = 0.1 days) after CED. The favorable pharmacokinetic profile of extended topotecan release for about seven days, along with biodistribution featuring perivascular accumulation of the nanoparticles, provided, in addition to the known topoisomerase I inhibition, an effective antiangiogenic therapy. In the rat intracranial U87MG tumor model, vascular targeting of Ls-TPT with CED was associated with reductions in laminin expression and vascular density compared to free topotecan or control treatments. A single CED treatment on day 7 showed that free topotecan conferred no survival benefit versus control. However, Ls-TPT produced a significant (P = 0.0002) survival benefit, with six of seven complete cures. Larger U87MG tumors, where CED of Ls-TPT on day 12 resulted in one of six cures, indicated the necessity to cover the entire tumor with the infused therapeutic agent. CED of Ls-TPT was also efficacious in the intracranial U251MG tumor model (P = 0.0005 versus control). We conclude that the combination of a novel nanoparticle Ls-TPT and CED administration was very effective in treating experimental brain tumors.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Convección , Sistemas de Liberación de Medicamentos/métodos , Glioma/tratamiento farmacológico , Topotecan/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Glioma/patología , Humanos , Liposomas , Masculino , Ratas , Ratas Desnudas
11.
J Neurosci Methods ; 154(1-2): 225-32, 2006 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-16472868

RESUMEN

Convection-enhanced delivery (CED) is a recently developed technique for local delivery of agents to a large volume of tissue in the central nervous system (CNS). We have previously reported that this technique can be applied to CNS delivery of nanoparticles including viruses and liposomes. In this paper, we describe the impact of key physical and chemical properties of infused molecules on the extent of CED-mediated delivery. For simple infusates, CED distribution was significantly increased if the infusate was more hydrophilic or had less tissue affinity. Encapsulation of tissue-affinitive molecules by neutral liposomes significantly increased their tissue distribution. The poorer brain distribution observed with cationic liposomes, due to their greater tissue affinity, was completely overcome by PEGylation, which provides steric stabilization and reduced surface charge. Finally, liposomal encapsulation of doxorubicin reduced its tissue affinity and substantially increased its distribution within brain tumor tissue. Taken together, the physical and chemical properties of drugs, small molecules and macromolecular carriers determine the tissue affinity of the infusate and strongly affect the distribution of locally applied agents. Thus, an increased and more predictable tissue distribution can be achieved by reducing the tissue affinity of the infusate using appropriately engineered liposomes or other nanoparticles.


Asunto(s)
Encéfalo/fisiología , Sistemas de Liberación de Medicamentos/instrumentación , Preparaciones Farmacéuticas/administración & dosificación , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Química Farmacéutica , Convección , Composición de Medicamentos , Electroquímica , Excipientes , Liposomas , Masculino , Nanoestructuras , Tamaño de la Partícula , Vehículos Farmacéuticos , Polietilenglicoles/química , Ratas , Ratas Sprague-Dawley , Estereoisomerismo
12.
Drug Deliv ; 23(3): 781-6, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-24865286

RESUMEN

In cases of malignant brain tumors, infiltrating tumor cells that exist at the tumor-surrounding brain tissue always escape from cytoreductive surgery and, protected by blood-brain barrier (BBB), survive the adjuvant chemoradiotherapy, eventually leading to tumor recurrence. Local interstitial delivery of chemotherapeutic agents is a promising strategy to target these cells. During our effort to develop effective drug delivery methods by intra-tumoral infusion of chemotherapeutic agents, we found consistent pattern of leakage from the tumor. Here we describe our findings and propose promising strategy to cover the brain tissue surrounding the tumor with therapeutic agents by means of convection-enhanced delivery. First, the intracranial tumor isograft model was used to define patterns of leakage from tumor mass after intra-tumoral infusion of the chemotherapeutic agents. Liposomal doxorubicin, although first distributed inside the tumor, distributed diffusely into the surrounding normal brain once the leakage happen. Trypan blue dye was used to evaluate the distribution pattern of peri-tumoral infusions. When infused intra- or peri-tumorally, infusates distributed robustly into the tumor border. Subsequently, volume of distributions with different infusion scheduling; including intra-tumoral infusion, peri-tumoral infusion after tumor resection, peri-tumoral infusion without tumor removal with or without systemic infusion of steroids, were compared with Evans-blue dye. Peri-tumoral infusion without tumor removal resulted in maximum volume of distribution. Prior use of steroids further increased the volume of distribution. Local interstitial drug delivery targeting tumor surrounding brain tissue before tumor removal should be more effective when targeting the invading cells.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Doxorrubicina/análogos & derivados , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Línea Celular Tumoral , Convección , Doxorrubicina/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Polietilenglicoles/administración & dosificación , Ratas , Distribución Tisular/fisiología
13.
Brain Res Brain Res Protoc ; 16(1-3): 20-6, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16181805

RESUMEN

Liposomes loaded with Gadoteridol, in combination with convection-enhanced delivery (CED), offer an excellent option to monitor CNS delivery of therapeutic compounds with MRI. In previous studies, we investigated possible clinical applications of liposomes to the treatment of brain tumors. In this study, up to 700 microl of Gadoteridol/rhodamine-loaded liposomes were distributed in putamen, corona radiata and brainstem of non-human primates. Distribution was monitored by real-time MRI throughout infusion procedures and allowed accurate calculation of volume of distribution within anatomical structures. We found that different regions of the brain gave various volumes of distribution when infused with the same volume of liposome. Based on these findings, distinct distribution pathways within infused structures can be predicted. This work underlines the importance of monitoring drug delivery to CNS and enables accurate delivery of drug-loaded liposomes to specific brain regions with a standard MRI procedure. Findings presented in this manuscript may allow for modeling of parameters used for direct delivery of therapeutics into various regions of the brain.


Asunto(s)
Encéfalo/fisiología , Sistemas de Liberación de Medicamentos , Liposomas , Imagen por Resonancia Magnética/métodos , Animales , Encéfalo/anatomía & histología , Medios de Contraste , Excipientes , Colorantes Fluorescentes , Gadolinio , Compuestos Heterocíclicos/administración & dosificación , Macaca fascicularis , Masculino , Compuestos Organometálicos/administración & dosificación , Rodaminas
14.
J Neurosurg ; 103(5): 923-9, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16304999

RESUMEN

OBJECT: Clinical application of the convection-enhanced delivery (CED) technique is currently limited by low infusion speed and reflux of the delivered agent. The authors developed and evaluated a new step-design cannula to overcome present limitations and to introduce a rapid, reflux-free CED method for future clinical trials. METHODS: The CED of 0.4% trypan blue dye was performed in agarose gel to test cannula needles for distribution and reflux. Infusion rates ranging from 0.5 to 50 microl/minute were used. Agarose gel findings were translated into a study in rats and then in cynomolgus monkeys (Macacafascicularis) by using trypan blue and liposomes to confirm the efficacy of the reflux-free step-design cannula in vivo. Results of agarose gel studies showed reflux-free infusion with high flow rates using the step-design cannula. Data from the study in rats confirmed the agarose gel findings and also revealed increasing tissue damage at a flow rate above 5-microl/minute. Robust reflux-free delivery and distribution of liposomes was achieved using the step-design cannula in brains in both rats and nonhuman primates. CONCLUSIONS: The authors developed a new step-design cannula for CED that effectively prevents reflux in vivo and maximizes the distribution of agents delivered in the brain. Data in the present study show reflux-free infusion with a constant volume of distribution in the rat brain over a broad range of flow rates. Reflux-free delivery of liposomes into nonhuman primate brain was also established using the cannula. This step-design cannula may allow reflux-free distribution and shorten the duration of infusion in future clinical applications of CED in humans.


Asunto(s)
Encéfalo , Cateterismo/instrumentación , Sistemas de Liberación de Medicamentos/instrumentación , Animales , Carbocianinas/farmacocinética , Colorantes/farmacocinética , Convección , Colorantes Fluorescentes/farmacocinética , Geles , Liposomas/farmacocinética , Macaca fascicularis , Masculino , Ratas , Ratas Sprague-Dawley , Sefarosa , Azul de Tripano/farmacocinética
15.
J Control Release ; 220(Pt A): 51-60, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26437259

RESUMEN

There is an urgent need to develop nanocarriers for the treatment of glioblastoma multiforme (GBM). Using co-registered positron emission tomography (PET) and magnetic resonance (MR) images, here we performed systematic studies to investigate how a nanocarrier's size affects the pharmacokinetics and biodistribution in rodents with a GBM xenograft. In particular, highly stable, long-circulating three-helix micelles (3HM), based on a coiled-coil protein tertiary structure, were evaluated as an alternative to larger nanocarriers. While the circulation half-life of the 3HM was similar to 110-nm PEGylated liposomes (t1/2=15.5 and 16.5h, respectively), the 20-nm micelles greatly enhanced accumulation within a U87MG xenograft in nu/nu rats after intravenous injection. After accounting for tumor blood volume, the extravasated nanoparticles were quantified from the PET images, yielding ~0.77%ID/cm(3) for the micelles and 0.45%ID/cm(3) for the liposomes. For GBM lesions with a volume greater than 100mm(3), 3HM accumulation was enhanced both within the detectable tumor and in the surrounding brain parenchyma. Further, the nanoparticle accumulation was shown to extend to the margins of the GBM xenograft. In summary, 3HM provides an attractive nanovehicle for carrying treatment to GBM.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Radioisótopos de Cobre/farmacocinética , Glioblastoma/diagnóstico por imagen , Micelas , Secuencia de Aminoácidos , Animales , Autorradiografía , Volumen Sanguíneo , Humanos , Liposomas/farmacocinética , Imagen por Resonancia Magnética , Masculino , Datos de Secuencia Molecular , Nanopartículas/química , Tomografía de Emisión de Positrones , Ratas , Distribución Tisular
16.
Nanomedicine (Lond) ; 9(14): 2099-108, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24494810

RESUMEN

AIM: We sought to evaluate nanoliposomal irinotecan as an intravenous treatment in an orthotopic brain tumor model. MATERIALS & METHODS: Nanoliposomal irinotecan was administered intravenously in the intracranial U87MG brain tumor model in mice, and irinotecan and SN-38 levels were analyzed in malignant and normal tissues. Therapy studies were performed in comparison to free irinotecan and control treatments. RESULTS: Tissue analysis demonstrated favorable properties for nanoliposomal irinotecan, including a 10.9-fold increase in tumor AUC for drug compared with free irinotecan and 35-fold selectivity for tumor versus normal tissue exposure. As a therapy for orthotopic brain tumors, nanoliposomal irinotecan showed a mean survival time of 54.2 versus 29.5 days for free irinotecan. A total of 33% of the animals receiving nanoliposomal irinotecan showed no residual tumor by study end compared with no survivors in the other groups. CONCLUSION: Nanoliposomal irinotecan administered systemically provides significant pharmacologic advantages and may be an efficacious therapy for brain tumors.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Camptotecina/análogos & derivados , Liposomas , Nanoestructuras , Animales , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/farmacocinética , Neoplasias Encefálicas/metabolismo , Camptotecina/administración & dosificación , Camptotecina/farmacocinética , Camptotecina/uso terapéutico , Irinotecán , Ratas
17.
Neuro Oncol ; 15(2): 189-97, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23262509

RESUMEN

BACKGROUND: Liposomal drug packaging is well established as an effective means for increasing drug half-life, sustaining drug activity, and increasing drug efficacy, whether administered locally or distally to the site of disease. However, information regarding the relative effectiveness of peripheral (distal) versus local administration of liposomal therapeutics is limited. This issue is of importance with respect to the treatment of central nervous system cancer, for which the blood-brain barrier presents a significant challenge in achieving sufficient drug concentration in tumors to provide treatment benefit for patients. METHODS: We compared the anti-tumor activity and efficacy of a nanoliposomal formulation of irinotecan when delivered peripherally by vascular route with intratumoral administration by convection-enhanced delivery (CED) for treating intracranial glioblastoma xenografts in athymic mice. RESULTS: Our results show significantly greater anti-tumor activity and survival benefit from CED of nanoliposomal irinotecan. In 2 of 3 efficacy experiments, there were animal subjects that experienced apparent cure of tumor from local administration of therapy, as indicated by a lack of detectable intracranial tumor through bioluminescence imaging and histopathologic analysis. Results from investigating the effectiveness of combination therapy with nanoliposomal irinotecan plus radiation revealed that CED administration of irinotecan plus radiation conferred greater survival benefit than did irinotecan or radiation monotherapy and also when compared with radiation plus vascularly administered irinotecan. CONCLUSIONS: Our results indicate that liposomal formulation plus direct intratumoral administration of therapeutic are important for maximizing the anti-tumor effects of irinotecan and support clinical trial evaluation of this therapeutic plus route of administration combination.


Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Camptotecina/análogos & derivados , Sistemas de Liberación de Medicamentos , Glioblastoma/tratamiento farmacológico , Liposomas , Nanopartículas , Animales , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Camptotecina/administración & dosificación , Convección , Vías de Administración de Medicamentos , Femenino , Glioblastoma/mortalidad , Glioblastoma/patología , Historia Antigua , Humanos , Técnicas para Inmunoenzimas , Inyecciones Intraperitoneales , Irinotecán , Ratones , Ratones Desnudos , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Toxins (Basel) ; 3(4): 369-97, 2011 04.
Artículo en Inglés | MEDLINE | ID: mdl-22069714

RESUMEN

Liposomes have long been effective delivery vehicles for transport of toxins to peripheral cancers. The combination of convection-enhanced delivery (CED) with liposomal toxins was originally proposed to circumvent the limited delivery of intravascular liposomes to the central nervous system (CNS) due to the blood-brain-barrier (BBB). CED offers markedly improved distribution of infused therapeutics within the CNS compared to direct injection or via drug eluting polymers, both of which depend on diffusion for parenchymal distribution. This review examines the basis for improved delivery of liposomal toxins via CED within the CNS, and discusses preclinical and clinical experience with these therapeutic techniques. How CED and liposomal technologies may influence future neurooncologic treatments are also considered.


Asunto(s)
Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/patología , Sistemas de Liberación de Medicamentos/métodos , Liposomas/uso terapéutico , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Convección , Humanos
19.
Neuro Oncol ; 12(9): 928-40, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20488958

RESUMEN

Canine spontaneous intracranial tumors bear striking similarities to their human tumor counterparts and have the potential to provide a large animal model system for more realistic validation of novel therapies typically developed in small rodent models. We used spontaneously occurring canine gliomas to investigate the use of convection-enhanced delivery (CED) of liposomal nanoparticles, containing topoisomerase inhibitor CPT-11. To facilitate visualization of intratumoral infusions by real-time magnetic resonance imaging (MRI), we included identically formulated liposomes loaded with Gadoteridol. Real-time MRI defined distribution of infusate within both tumor and normal brain tissues. The most important limiting factor for volume of distribution within tumor tissue was the leakage of infusate into ventricular or subarachnoid spaces. Decreased tumor volume, tumor necrosis, and modulation of tumor phenotype correlated with volume of distribution of infusate (Vd), infusion location, and leakage as determined by real-time MRI and histopathology. This study demonstrates the potential for canine spontaneous gliomas as a model system for the validation and development of novel therapeutic strategies for human brain tumors. Data obtained from infusions monitored in real time in a large, spontaneous tumor may provide information, allowing more accurate prediction and optimization of infusion parameters. Variability in Vd between tumors strongly suggests that real-time imaging should be an essential component of CED therapeutic trials to allow minimization of inappropriate infusions and accurate assessment of clinical outcomes.


Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Camptotecina/análogos & derivados , Sistemas de Liberación de Medicamentos/métodos , Glioma/tratamiento farmacológico , Nanopartículas , Animales , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/veterinaria , Camptotecina/administración & dosificación , Convección , Modelos Animales de Enfermedad , Perros , Glioma/patología , Glioma/veterinaria , Irinotecán , Liposomas , Imagen por Resonancia Magnética
20.
Methods Enzymol ; 465: 349-62, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19913176

RESUMEN

Direct delivery of therapeutic agents to the human central nervous system remains an inadequately studied field. Our group has extensively studied and refined a powerful method for distributing various macromolecules and nanoparticles into the parenchyma by means of a procedure called convection-enhanced delivery (CED). First, we developed an improved design of infusion cannula that greatly decreased the likelihood of reflux of infusate up the outside of the cannula. Second, we began to use liposomes loaded with the MRI contrast reagent, Gadoteridol (Gd), to track infusions into brain parenchyma in real time. This innovation generated a wealth of quantitative and qualitative data that in turn drove further improvements in CED. In this chapter, we review many of the recently devised methods needed to ensure controlled distribution of therapeutic agents in the brain.


Asunto(s)
Encéfalo/metabolismo , Compuestos Heterocíclicos/administración & dosificación , Liposomas , Compuestos Organometálicos/administración & dosificación , Animales , Medios de Contraste , Gadolinio , Imagen por Resonancia Magnética , Primates
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA