Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Environ Manage ; 300: 113734, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34649327

RESUMEN

Treatment with exogenous additives during composting can help to alleviate the accumulation of antibiotic resistance genes (ARGs) caused by the direct application of pig manure to farmland. In addition, nano-cellulose has an excellent capacity for adsorbing pollutants. Thus, the effects of adding 300, 600, and 900 mg/kg nano-cellulose to compost on the bacterial communities, mobile genetic elements (MGEs), and ARGs were determined in this study. After composting, treatment with nano-cellulose significantly reduced the relative abundance of ARGs, which was lowest in the compost product with 600 mg/kg added nano-cellulose. Nano-cellulose inhibited the rebound in ARGs from the cooling period to the maturity period, and weakened the selective pressure of heavy metals on microorganisms by passivating bio-Cu. The results also showed that MGEs explained most of the changes in the abundances of ARGs, and MGEs had direct effects on ARGs. The addition of 600 mg/kg nano-cellulose reduced the abundances of bacterial genera associated with ermQ, tetG, and other genes, and the number of links (16) between ARGs and MGEs was lowest in the treatment with 600 mg/kg added nano-cellulose. Therefore, adding 600 mg/kg nano-cellulose reduced the abundances of ARGs by affecting host bacteria and MGEs. The results obtained in this study demonstrate the positive effect of nano-cellulose on ARG pollution in poultry manure, where adding 600 mg/kg nano-cellulose was most effective at reducing the abundances of ARGs.


Asunto(s)
Compostaje , Animales , Antibacterianos/farmacología , Bacterias/genética , Celulosa , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Estiércol , Porcinos
2.
J Hazard Mater ; 466: 133600, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38316070

RESUMEN

This study aimed to remediate petroleum-contaminated soil using co-pyrolysis biochar derived from rice husk and cellulose. Rice husk and cellulose were mixed in various weight ratios (0:1, 1:0, 1:1, 1:3 and 3:1) and pyrolyzed under 500 °C. These biochar variants were labeled as R0C1, R1C0, R1C1, R1C3 and R3C1, respectively. Notably, the specific surface area and carbon content of the co- pyrolysis biochar increased, potentially promoting the growth and colonization of soil microorganisms. On the 60th day, the microbial control group achieved a 46.69% removal of pollutants, while the addition of R0C1, R1C0, R1C3, R1C1 and R3C1 resulted in removals of 70.56%, 67.01%, 67.62%, 68.74% and 67.30%, respectively. In contrast, the highest efficiency observed in the abiotic treatment group was only 24.12%. This suggested that the removal of petroleum pollutants was an outcome of the collaborative influence of co-pyrolysis biochar and soil microorganisms. Furthermore, the abundance of Proteobacteria, renowned for its petroleum degradation capability, obviously increased in the treatment group with the addition of co-pyrolysis biochar. This demonstrated that co-pyrolysis biochar could notably stimulate the growth of functionally associated microorganisms. This research confirmed the promising application of co-pyrolysis biochar in the remediation of petroleum-contaminated soil.


Asunto(s)
Contaminantes Ambientales , Microbiota , Petróleo , Contaminantes del Suelo , Biodegradación Ambiental , Petróleo/metabolismo , Pirólisis , Carbón Orgánico , Suelo , Contaminantes del Suelo/análisis , Celulosa
3.
J Mater Chem B ; 10(44): 9188-9201, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36314575

RESUMEN

Engineered hydrogels with excellent mechanical properties and multi-functionality have great potential as soft electronic skins, tissue substitutes and flexible robotic joints. However, it has been a challenge to construct multifunctional hydrogels, especially when integrating high stretchability, toughness and strength, low hysteresis, good self-healing and adhesion abilities into a hydrogel system simultaneously. Here, we successfully developed a structural hydrogel composed of a reversible covalently cross-link-based poly-N-(2-hydroxyethyl)acrylamide (PHEMAA) network and available plastically deformable casein micelles. Such a design enabled the reversible covalent cross-links and casein micelles to enhance energy dissipation and toughen the PHEMAA/casein hybrid hydrogel synergistically. More importantly, the hydrogel could respond to the imposed strains reversibly by cross-link and micelle deformation induced-network reconstitution, which led to low hysteresis of the hydrogels. The recoverable gel networks still exhibited their effects on energy dissipation at the stress-focused area, endowing the hydrogels with fatigue resistance. As a result, the hydrogels exhibited a compressive strength of 36.5 MPa, high stretchability (1460%), high toughness (∼5.98 MJ m-3), low hysteresis (<30%) and fatigue resistance with almost completely overlapped hysteresis curves during 10 loading cycles. In addition, the introduction of casein micelles and reversible covalent bonding endowed the elastomer hydrogels with high adhesivity, self-healing abilities and biocompatibility.


Asunto(s)
Elastómeros , Hidrogeles , Hidrogeles/química , Micelas , Caseínas , Adhesivos
4.
Biomaterials ; 219: 119379, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31376746

RESUMEN

Engineering interfacial structure of biomaterials have drawn much attention due to it can improve the diagnostic accuracy and therapy efficacy of nanomedicine, even introducing new moiety to construct theranostic agents. Nanosized magnetic resonance imaging contrast agent holds great promise for the clinical diagnosis of disease, especially tumor and brain disease. Thus, engineering its interfacial structure can form new theranostic platform to achieve effective disease diagnosis and therapy. In this study, we engineered the interfacial structure of typical MRI contrast agent, Gd2O3, to form a new theranostic agent with improved relaxivity for MRI guided synergetic chemodynamic/photothermal therapy. The synthesized Mn doped gadolinium oxide nanoplate exhibit improved T1 contrast ability due to large amount of efficient paramagnetic metal ions and synergistic enhancement caused by the exposed Mn and Gd cluster. Besides, the introduced Mn element endow this nanomedicine with the Fenton-like ability to generate OH from excess H2O2 in tumor site to achieve chemodynamic therapy (CDT). Furthermore, polydopamine engineered surface allow this nanomedicine with effective photothermal conversion ability to rise local temperature and accelerate the intratumoral Fenton process to achieve synergetic CDT/photothermal therapy (PTT). This work provides new guidance for designing magnetic resonance imaging guided synergetic CDT/PTT to achieve tumor detection and therapy.


Asunto(s)
Antineoplásicos/farmacología , Gadolinio/química , Hipertermia Inducida , Imagen por Resonancia Magnética , Nanopartículas/química , Fototerapia , Microambiente Tumoral , Animales , Línea Celular Tumoral , Supervivencia Celular , Medios de Contraste/química , Humanos , Indoles/química , Rayos Láser , Ratones Desnudos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Neoplasias/diagnóstico , Neoplasias/patología , Neoplasias/terapia , Polietilenglicoles/química , Polímeros/química , Superóxidos/química , Microambiente Tumoral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA