Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 609: 718-733, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34863546

RESUMEN

Enhancing long-term antibacterial activity of membrane materials is an effective strategy to reduce biological contamination. Herein, we developed a long-term, synergistic antibacterial polyacrylonitrile (PAN) nanofiber membrane by a "one-pot" electrospinning process. In the reaction solution of PAN and N, N-dimethylformamide (DMF), silver-silicon dioxide nanoparticles (Ag@SiO2 NPs) are in-situ synthesized and stabilized using silane coupling agent; and [2-(methacryloyloxy)-ethyl] trimethylammonium chloride (MT) monomers are then in-situ cross-linked to obtain a polyquaternary ammonium salt (PMT). Subsequently, the casting solution is directly used to fabricate Ag@SiO2/PMT-PAN nanofibrous membrane (NFM) via electrospinning. The antibacterial activity, reusability, synergy effect and biological safety of the Ag@SiO2/PMT-PAN NFM are systematically investigated, and the synergistic antibacterial mechanism is also explored. Even at very low (0.3 wt%) content of silver, the Ag@SiO2/PMT-PAN NFM exhibits excellent antibacterial activity against E. coli (99%) and S. aureus (99%). Also, the antibacterial ability of the NFM remains the same level after three cycles of antibacterial processes with the efficient synergy effects of Ag@SiO2 and PMT components. When the Ag@SiO2/PMT-PAN contacts with bacteria, the PMT attracts and kills the bacteria through electrostatic action. The bacteria with damaged cell membranes are deposited on the nanofibrous membrane, which could greatly promote the release of Ag+ and further enhance the antibacterial activity. Moreover, L929 fibroblasts are co-cultured with the extract of 4 mg/mL Ag@SiO2/PMT-PAN for 5 days, which exhibits a low cytotoxicity with a cell proliferation ratio of 95%. This work opens new pathways for developing long-term effective and synergistic antibacterial nanofibrous membrane materials to prevent infections associated with biomedical equipment.


Asunto(s)
Nanofibras , Resinas Acrílicas , Antibacterianos/farmacología , Escherichia coli , Dióxido de Silicio , Staphylococcus aureus
2.
J Mater Chem B ; 9(33): 6678-6690, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34378629

RESUMEN

Although a series of biomass-derived hemostats has been developed, the desire for green-prepared hemostatic materials with biosafety has not decreased. Herein, we constructed porous carboxymethyl chitosan/sodium alginate/Ca(OH)2 powders (PCSCPs) with suitable adaptability for instant control of irregular hemorrhage via a facile and green approach. By one-pot chemical crosslinking of carboxymethyl chitosan and sodium alginate, hydrogels were formed and immediately ionically cross-linked along with the generation of Ca(OH)2 to prepare PCSCPs. As hydrogel powders, PCSCPs with abundant hydrophilic carboxymethyl groups and porous hierarchically micro-nanostructures displayed a high water absorption ratio of over 1600%. The PCSCPs were confirmed with favorable hemocompatibility, non-cytotoxic effects and excellent degradability. Hemostasis assays in vitro showed that PCSCPs possessed an outstanding property of platelet activation and red blood cell aggregation. The PCSCPs effectively shortened the hemostatic time and blood loss to ca. 50% in rodent bleeding models compared with medical gauze and commercial chitosan-based hemostats. Furthermore, a mouse subcutaneous implantation model demonstrated an ignorable inflammation response and potential tissue repair capability of PCSCPs. It's believed that green-prepared and biomass-derived PCSCPs are feasible biomedical hemostatic materials in view of engineering and provide a promising platform to design hemostats in prehospital management and clinical settings.


Asunto(s)
Materiales Biocompatibles/farmacología , Hidrogeles/farmacología , Nanoestructuras/química , Adulto , Alginatos/química , Alginatos/farmacología , Animales , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Biomasa , Coagulación Sanguínea/efectos de los fármacos , Hidróxido de Calcio/química , Hidróxido de Calcio/farmacología , Agregación Celular/efectos de los fármacos , Quitosano/análogos & derivados , Quitosano/química , Quitosano/farmacología , Eritrocitos/efectos de los fármacos , Hemostasis/efectos de los fármacos , Humanos , Hidrogeles/síntesis química , Hidrogeles/química , Ensayo de Materiales , Tamaño de la Partícula , Activación Plaquetaria/efectos de los fármacos , Porosidad , Polvos , Conejos , Ratas , Ratas Sprague-Dawley , Agua/química
3.
Carbohydr Polym ; 257: 117598, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33541635

RESUMEN

Hydrogels with antioxidative and antibacterial properties have emerged as potential dressings for accelerated wound healing. Herein, a series of reduced polydopamine nanoparticles (rPDA NPs) incorporated oxidized dextran/chitosan hybrid hydrogels have been designed for wound healing due to their excellent antioxidative property and antibacterial activity. The physicochemical properties as well as the antioxidative activities of the hydrogels were carefully characterized. The results demonstrated rPDA NPs have better antioxidative activity than the untreated PDA NPs. And the rPDA NPs incorporated oxidized dextran/chitosan hybrid hydrogels had excellent antioxidative properties to protect cells against external oxidative stress. Besides, the hydrogels also showed antibacterial ability to protect the wound against infections. In vitro and in vivo investigations concluded that rPDA NPs incorporated oxidized dextran/chitosan hybrid hydrogels could be served as an effective dressing for accelerated wound healing.


Asunto(s)
Antibacterianos/farmacología , Antioxidantes/química , Quitosano/química , Dextranos/química , Hidrogeles/química , Indoles/química , Polímeros/química , Animales , Antibacterianos/química , Antiinfecciosos/farmacología , Vendajes , Compuestos de Bifenilo/química , Depuradores de Radicales Libres , Células Endoteliales de la Vena Umbilical Humana , Humanos , Técnicas In Vitro , Masculino , Ratones , Nanopartículas , Picratos/química , Polisacáridos/química , Staphylococcus aureus/efectos de los fármacos , Porcinos , Cicatrización de Heridas/efectos de los fármacos
4.
J Colloid Interface Sci ; 556: 492-502, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31473539

RESUMEN

Given the complexity of pollutants in wastewater, development of facile and effective multifunctional materials, which can not only kill bacteria but also remove dyes from wastewater, is in high demand. Herein, a facile strategy for the preparation of positively-charged nanofibrous membranes (NFMs) is reported via the combination of electrospinning and in-situ cross-linked polymerization of poly ([2-(methacryloyloxy)-ethyl] trimethyl ammonium chloride) (PMETAC) in poly (ether sulfone) (PES) solution. The quaternary ammonium salt polymer of PMETAC enabled the NFMs with positive charge to kill bacteria and remove anionic dyes. The antibacterial tests including agar plate counting and live/dead staining indicate that the NFMs show strong antibacterial ability with bacterial killing ratios of nearly 99% for both Escherichia coli and Staphylococcus aureus, as well as remarkable recyclability towards killing bacteria. The dyes adsorption experiments show that the NFMs exhibit high adsorption capacity for anionic dyes up to 208 mg g-1 for Congo Red (CR) and good reusability toward CR. Impressively, the membrane adsorption column test indicates that the CR dye removal ratio is up to 100% for the first time, and that is still as high as 96.5% for the third time with a fresh dye solution. Given the above advantages, such fascinating NFMs may provide new perspectives in the exploitation of multifunctional membrane materials for complex water remediation.


Asunto(s)
Antibacterianos/química , Colorantes/química , Escherichia coli/crecimiento & desarrollo , Membranas Artificiales , Nanofibras/química , Polímeros/química , Staphylococcus aureus/crecimiento & desarrollo , Sulfonas/química , Aguas Residuales , Adsorción , Aguas Residuales/química , Aguas Residuales/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA