RESUMEN
PURPOSE: Scale-down devices (SDD) are designed to simulate large-scale thawing of protein drug substance, but require only a fraction of the material. To evaluate the performance of a new SDD that aims to predict thawing in large-scale 2 L bottles, we characterised 3D temperature profiles and changes in concentration and density in comparison to 125 mL and 2 L bottles. Differences in diffusion between a monoclonal antibody (mAb) and histidine buffer after thawing were examined. METHODS: Temperature profiles at six distinct positions were recorded with type T thermocouples. Size-exclusion chromatography allowed quantification of mAb and histidine. Polysorbate 80 was quantified using a fluorescent dye assay. In addition, the solution's density at different locations in bottles and the SDD was identified. RESULTS: The temperature profiles in the SDD and the large-scale 2 L bottle during thawing were similar. Significant concentration gradients were detected in the 2 L bottle leading to marked density gradients. The SDD slightly overestimated the dilution in the top region and the maximum concentrations at the bottom. Fast diffusion resulted in rapid equilibration of histidine. CONCLUSION: The innovative SDD allows a realistic characterisation and helps to understand thawing processes of mAb solutions in large-scale 2 L bottles. Only a fraction of material is needed to gain insights into the thawing behaviour that is associated with several possible detrimental limitations.
Asunto(s)
Anticuerpos Monoclonales/química , Excipientes/química , Tampones (Química) , Química Farmacéutica , Almacenaje de Medicamentos , Excipientes/análisis , Congelación , Polisorbatos/análisis , Polisorbatos/químicaRESUMEN
Silicone oil (SO) migration into the drug product of combination products for biopharmaceuticals during storage is a common challenge. As the inner barrel surface is depleted of SO the extrusion forces can increase compromising the container functionality. In this context we investigated the impact of different formulations on the increase in gliding forces in a spray-on siliconized pre-filled syringe upon storage at 2-8 °C, 25 °C and 40 °C for up to 6 months. We tested the formulation factors such as surfactant type, pH, and ionic strength in the presence of one monoclonal antibody (mAb) as well as compared three mAbs in one formulation. After 1 month at 40 °C, the extrusion forces were significantly increased due to SO detachment dependent on the fill medium. The storage at 40 °C enhanced the SO migration process but it could also be observed at lower storage temperatures. Regarding the formulation factors the tendency for SO migration was predominantly dependent on the presence and type of surfactant. Interestingly, when varying the mAb molecules, one of the proteins showed a rather stabilizing effect on the SO layer resulting into higher container stability. In contrast to the formulation factors, those different stability outcomes could not be explained by interfacial tension (IFT) measurements at the SO interface. Further characterization of the mAb molecules regarding interfacial rheology and conformational stability were not adequately able to explain the observed difference. Solely a hydrophobicity ranking of the molecules correlated to the stability outcome. Further investigations are needed to clarify the role of the protein in the SO detachment process and to understand the cause for the stabilization. However, the study clearly demonstrated that the protein itself plays a critical role in the SO detachment process and underlined the importance to include verum for container stability.
Asunto(s)
Anticuerpos Monoclonales , Productos Biológicos , Estabilidad de Medicamentos , Almacenaje de Medicamentos , Aceites de Silicona , Tensoactivos , Productos Biológicos/química , Anticuerpos Monoclonales/química , Aceites de Silicona/química , Tensoactivos/química , Embalaje de Medicamentos/métodos , Temperatura , Concentración de Iones de Hidrógeno , Química Farmacéutica/métodos , Jeringas , Concentración Osmolar , Combinación de Medicamentos , Siliconas/químicaRESUMEN
Surface-induced aggregation of protein therapeutics is opposed by employing surfactants, which are ubiquitously used in drug product development, with polysorbates being the gold standard. Since poloxamer 188 is currently the only generally accepted polysorbate alternative, but cannot be ubiquitously applied, there is a strong need to develop surfactant alternatives for protein biologics that would complement and possibly overcome known drawbacks of existing surfactants. Yet, a severe lack of structure-function relationship knowledge complicates the development of new surfactants. Herein, we perform a systematic analysis of the structure-function relationship of three classes of novel alternative surfactants. Firstly, the mode of action is thoroughly characterized through tensiometry, calorimetry and MD simulations. Secondly, the safety profiles are evaluated through cell-based in vitro assays. Ultimately, we could conclude that the alternative surfactants investigated possess a mode of action and safety profile comparable to polysorbates. Moreover, the biophysical patterns elucidated here can be exploited to precisely tune the features of future surfactant designs.
Asunto(s)
Productos Biológicos , Surfactantes Pulmonares , Tensoactivos/química , Polisorbatos/química , Poloxámero/química , Relación Estructura-ActividadRESUMEN
In order to overcome silicone oil related problems for biopharmaceuticals, novel container systems are of interest with a focus on the reduction, fixation or complete avoidance of silicone oil in the primary container. Ultimately, silicone oil free (SOF) container systems made from cyclic olefin (co-)polymer or glass combined with the respective silicone-oil free plungers were developed. In the following study we evaluated the potential of a SOF container system based on a glass barrel in combination with a fluoropolymer coated syringe plunger. In a long-term stability study, the system was compared to other alternative container systems in terms of functionality and particle formation when filled with placebo buffers. The system proved to be a valuable alternative to marketed siliconized container systems with acceptable and consistent break-loose gliding forces and it was clearly superior in terms of particle formation over storage time. Additionally, we evaluated the importance of the glass barrel surface for functionality. The interaction of the fill medium with the glass surface significantly impacted friction forces. Consequently, storage conditions and production processes like washing and sterilization, which can easily alter the surface properties, should be carefully evaluated, and controlled. The novel combination of non-lubricated glass barrel and fluoropolymer coated plunger provides a highly valuable SOF packaging alternative for biopharmaceuticals.
Asunto(s)
Productos Biológicos , Aceites de Silicona , Polímeros de Fluorocarbono , Embalaje de Medicamentos , Jeringas , PolitetrafluoroetilenoRESUMEN
Many pharmaceutical manufacturing units utilize pre-sterilized ready-to fill primary containers for parenterals. The containers may have been sterilized by the supplier via autoclavation. This process can change the physicochemical properties of the material and the subsequent product stability. We studied the impact of autoclavation on baked on siliconized glass containers for biopharmaceuticals. We characterized the container layers of different thickness before and after autoclavation for 15 min at 121 °C and 130 °C. Furthermore, we analyzed the adsorption of a mAb to the silicone layer and subjected filled containers to 12 weeks storage at 40 °C monitoring functionality and subvisible particle formation of the product. Autoclavation turned the initially homogenous silicone coating into an incoherent surface with uneven microstructure, changed surface roughness and energy, and increased protein adsorption. The effect was more pronounced at higher sterilization temperatures. We did not observe an effect of autoclavation on stability. Our results did not indicate any concerns for autoclavation at 121 °C for safety and stability of drug/device combination products using baked-on siliconized glass containers.
Asunto(s)
Productos Biológicos , Siliconas/química , Vidrio/química , Jeringas , Calor , Embalaje de MedicamentosRESUMEN
Therapeutically relevant proteins naturally adsorb to interfaces, causing aggregation which in turn potentially leads to numerous adverse consequences such as loss of activity or unwanted immunogenic reactions. Surfactants are ubiquitously used in biotherapeutics drug development to oppose interfacial stress, yet, the choice of the surfactant is extremely limited: to date, only polysorbates (PS20/80) and poloxamer 188 are used in commercial products. However, both surfactant families suffer from severe degradation and impurities of the raw material, which frequently increases the risk of particle generation, chemical protein degradation, and potential adverse immune reactions. Herein, we assessed a total of 40 suitable alternative surfactant candidates and subsequently performed a selection through a three-gate screening process employing four protein modalities encompassing six different formulations. The screening is based on short-term agitation-induced aggregation studies coupled to particle analysis and surface tension characterization, followed by long-term quiescence stability studies connected to protein purity measurements and particle analysis. The study concludes by assessing the surfactant's chemical and enzymatic degradation propensity. The candidates emerging from the screening are de novo α-tocopherol-derivatives named VEDG-2.2 and VEDS, produced ad hoc for this study. They display protein stabilization potential comparable or better than polysorbates together with an increased resistance to chemical and enzymatic degradation, thus representing valuable alternative surfactants for biotherapeutics.
Asunto(s)
Productos Biológicos , Surfactantes Pulmonares , Humanos , Tensoactivos/química , Polisorbatos/química , Poloxámero/química , Proteínas/químicaRESUMEN
Pre-filled syringes have simplified parenteral administration of protein drugs. To ensure an easy and consistent movement of the plunger, the inner glass container surface is typically siliconized. For bake-on siliconization, emulsions are sprayed on and heat treated. Due to the European Union regulation REACh (Regulation concerning theRegistration,Evaluation,Authorisation and Restriction ofChemicals) the use of certain emulsion components, partially constituting the gold standard LiveoTM 365 35% Dimethicone NF Emulsion (LiveoTM 365), becomes restricted and LiveoTM 366 35% Dimethicone NF Emulsion (LiveoTM 366) has been introduced as an alternative. This change may affect the handling properties as well as the silicone layer formed. The purpose of these studies was to identify any differences that may influence the stability and safety of the final drug/device combination product to enable the use of the new emulsion. We compared silicone emulsions LiveoTM 365 and LiveoTM 366 and dilutions focusing on 1) their general physical stability, 2) the thermal degradation process of the emulsions and their components, and 3) the resulting silicone layer concerning chemistry, morphology, and functionality. The results were linked to the assessment of the final product regarding particle formation and short-term stability. A comparison of the emulsions LiveoTM 365 and LiveoTM 366 for bake-on siliconization is presented to support the transition of the latter as it becomes mandatory with REACh. Our studies show that the two emulsions do not significantly differ with respect to handling and stability, the resultant silicone layer characteristics as well as its functionality. We conclude that the transition to the new emulsion will not significantly impact the final product or the layer performance upon storage and with respect to particle formation.
Asunto(s)
Siliconas , Jeringas , Emulsiones , Calor , Proteínas , Siliconas/químicaRESUMEN
Polysorbate (PS) 20 and 80 are the main surfactants used to stabilize biopharmaceutical products. Industry practices on various aspects of PS based on a confidential survey and following discussions by 16 globally acting major biotechnology companies is presented in two publications. Part 1 summarizes the current practice and use of PS during manufacture in addition to aspects like current understanding of the (in)stability of PS, the routine QC testing and control of PS, and selected regulatory aspects of PS.1 The current part 2 of the survey focusses on understanding, monitoring, prediction, and mitigation of PS degradation pathways in order to propose an effective control strategy. The results of the survey and extensive cross-company discussions are put into relation with currently available scientific literature.
Asunto(s)
Productos Biológicos , Polisorbatos , TensoactivosRESUMEN
Polysorbates (PS) are widely used as a stabilizer in biopharmaceutical products. Industry practices on various aspects of PS are presented in this part 1 survey report based on a confidential survey and following discussions by 16 globally acting major biotechnology companies. The current practice and use of PS during manufacture across their global manufacturing sites are covered in addition to aspects like current understanding of the (in)stability of PS, the routine QC testing and control of PS, and selected regulatory aspects of PS. The results of the survey and extensive cross-company discussions are put into relation with currently available scientific literature. Part 2 of the survey report (upcoming) will focus on understanding, monitoring, prediction, and mitigation of PS degradation pathways to develop an effective control strategy.
Asunto(s)
Productos Biológicos , Polisorbatos , ExcipientesRESUMEN
OBJECTIVES: Peristaltic pumps are increasingly employed during fill & finish operations of a biopharmaceutical drug, due to sensitivity of many biological products to rotary piston pump-related stresses. Yet, possibly also unit operations using peristaltic pumps may shed particulates into the final product due to abrasion from the employed tubing. It was the aim of this study to elucidate the potential influence of particles shed from peristaltic pump tubing on the stability of a drug product. METHODS: Spiking solutions containing shed silicone particles were prepared via peristaltic pumping of placebo under recirculating conditions and subsequently characterized. Two formulated antibodies were spiked with two realistic, but worst-case levels of particles and a 6-month accelerated stability study with storage at 2-8, 25 and 40°C were conducted. KEY FINDINGS: Regarding the formation of aggregates and fragments, both mAbs degraded at their typically expected rates and no additional impact of spiked particles was observed. No changes were discerned however in turbidity, subvisible and visible particle assessments. Flow imaging data for one of the mAb formulations with spiked particles suggested limited colloidal stability of shed particles as indicated by a similar increase in spiked placebo. CONCLUSIONS: Shed silicone particles from peristaltic pump tubing are assumed to not impair drug product stability.
Asunto(s)
Anticuerpos Monoclonales/química , Siliconas/química , Tecnología Farmacéutica/instrumentación , Composición de Medicamentos/instrumentación , Industria Farmacéutica/instrumentación , Estabilidad de Medicamentos , Almacenaje de Medicamentos , Diseño de Equipo , TemperaturaRESUMEN
Significant loss of preservative was observed during filling of drug products during filling line stops. This study evaluated the losses of three commonly used preservatives in protein drugs, i.e. benzyl alcohol, phenol, and m-cresol. Concentration losses during static incubation were quantified and interpreted with regard to the potential driving forces for the underlying sorption, diffusion, and desorption steps. Partitioning from the solution into the silicone polymer was identified as the most decisive parameter for the extent of preservative loss. Additionally, the influence of tubing inner diameter, starting concentration as well as silicone tubing type was evaluated. Theoretical calculations assuming equilibrium between solution and tubing inner surface and one-directional diffusion following Fick's first law were used to approximate experimental data. Since significant losses were found already after few minutes, adequate measures must be taken to avoid deviations during filling of preservative-containing protein solutions that may impact product quality or antimicrobial efficacy. As a possible alternative to the highly permeable silicone tubing, a specific make of fluoropolymer tubing was identified being suitable for peristaltic pumps and not showing any preservative losses.
Asunto(s)
Conservadores Farmacéuticos , Siliconas , Modelos Teóricos , Polímeros/química , Espectrofotometría UltravioletaRESUMEN
A significant number of therapeutic proteins are marketed as pre-filled syringes or other drug/device combination products and have been safely used in these formats for years. Silicone oil, which is used as lubricant, can migrate into the drug product and may interact with therapeutic proteins. In this study, particles in the size range of 0.2-5 µm and ≥1 µm as determined by resonant mass measurement and micro-flow imaging/light obscuration, respectively, resulted from silicone sloughing off the container barrel after agitation. The degree of droplet formation correlated well with the applied baked-on silicone levels of 13 µg and 94 µg per cartridge. Silicone migration was comparable in placebo, 2 mg/mL and 33 mg/mL IgG1 formulations containing 0.04% (w/v) polysorbate 20. Headspace substantially increased the formation of silicone droplets during agitation. The highest particle concentrations reached, however, were still very low compared to numbers described for spray-on siliconized containers. When applying adequate baked-on silicone levels below 100 µg, bake-on siliconization efficiently limits silicone migration into the drug product without compromising device functionality.
Asunto(s)
Anticuerpos Monoclonales/química , Química Farmacéutica/métodos , Inmunoglobulina G/química , Siliconas/química , Anticuerpos Monoclonales/análisis , Inmunoglobulina G/análisis , Tamaño de la Partícula , Soluciones Farmacéuticas/análisis , Soluciones Farmacéuticas/química , Polímeros/análisis , Polímeros/química , Siliconas/análisis , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Sulfonas/análisis , Sulfonas/químicaRESUMEN
Biopharmaceutical products are increasingly commercialized as drug/device combinations to enable self-administration. Siliconization of the inner syringe/cartridge glass barrel for adequate functionality is either performed at the supplier or drug product manufacturing site. Yet, siliconization processes are often insufficiently investigated. In this study, an optimized bake-on siliconization process for cartridges using a pilot-scale siliconization unit was developed. The following process parameters were investigated: spray quantity, nozzle position, spray pressure, time for pump dosing and the silicone emulsion concentration. A spray quantity of 4mg emulsion showed best, immediate atomization into a fine spray. 16 and 29mg of emulsion, hence 4-7-times the spray volume, first generated an emulsion jet before atomization was achieved. Poor atomization of higher quantities correlated with an increased spray loss and inhomogeneous silicone distribution, e.g., due to runlets forming build-ups at the cartridge lower edge and depositing on the star wheel. A prolonged time for pump dosing of 175ms led to a more intensive, long-lasting spray compared to 60ms as anticipated from a higher air-to-liquid ratio. A higher spray pressure of 2.5bar did not improve atomization but led to an increased spray loss. At a 20mm nozzle-to-flange distance the spray cone exactly reached the cartridge flange, which was optimal for thicker silicone layers at the flange to ease piston break-loose. Initially, 10µg silicone was sufficient for adequate extrusion in filled cartridges. However, both maximum break-loose and gliding forces in filled cartridges gradually increased from 5-8N to 21-22N upon 80weeks storage at room temperature. The increase for a 30µg silicone level from 3-6N to 10-12N was moderate. Overall, the study provides a comprehensive insight into critical process parameters during the initial spray-on process and the impact of these parameters on the characteristics of the silicone layer, also in context of long-term product storage. The presented experimental toolbox may be utilized for development or evaluation of siliconization processes.
Asunto(s)
Siliconas/química , EmulsionesRESUMEN
Combination products have become popular formats for the delivery of parenteral medications. Bake-on siliconization of glass syringes or cartridges allows good piston break-loose and gliding during injection at low silicone levels. Although widely implemented in industry, still little is known and published on the effect of the bake-on process on the silicone level, layer thickness and chemical composition. In this study, cartridges were bake-on siliconized in a heat-tunnel by varying both temperature from 200 to 350°C for 12min and time from 5min to 3h at 316°C. Furthermore, a heat-oven with air-exchange was established as an experimental model. Heat treatment led to a time- and temperature-dependent decrease in the silicone level and layer thickness. After 1h at 316°C lubrication was insufficient. The silicone levels substantially decreased between 250 and 316°C after 12min. After bake-on, the peak molecular weight of the silicone remained unchanged while fractions below 5000g/mol were removed at 316 and 350°C. Cyclic low molecular weight siloxanes below 500g/mol were volatilized under all conditions. Despite most of the baked-on silicone was solvent-extractable, contact angle analysis indicated a strong binding of a remaining, thin silicone film to the glass surface.
Asunto(s)
Siliconas/química , Temperatura , Cromatografía en Gel , Sistemas de Liberación de Medicamentos , Cromatografía de Gases y Espectrometría de Masas , Infusiones Parenterales , Peso Molecular , Propiedades de Superficie , TermogravimetríaRESUMEN
Pre-filled syringes (PFS) and auto-injection devices with cartridges are increasingly used for parenteral administration. To assure functionality, silicone oil is applied to the inner surface of the glass barrel. Silicone oil migration into the product can be minimized by applying a thin but sufficient layer of silicone oil emulsion followed by thermal bake-on versus spraying-on silicone oil. Silicone layers thicker than 100nm resulting from regular spray-on siliconization can be characterized using interferometric profilometers. However, the analysis of thin silicone layers generated by bake-on siliconization is more challenging. In this paper, we have evaluated Fourier transform infrared (FTIR) spectroscopy after solvent extraction and a new 3D-Laser Scanning Microscopy (3D-LSM) to overcome this challenge. A multi-step solvent extraction and subsequent FTIR spectroscopy enabled to quantify baked-on silicone levels as low as 21-325µg per 5mL cartridge. 3D-LSM was successfully established to visualize and measure baked-on silicone layers as thin as 10nm. 3D-LSM was additionally used to analyze the silicone oil distribution within cartridges at such low levels. Both methods provided new, highly valuable insights to characterize the siliconization after processing, in order to achieve functionality.
Asunto(s)
Inyecciones a Chorro/instrumentación , Aceites de Silicona/química , Siliconas/análisis , Jeringas , Fenómenos Químicos , Emulsiones , Heptanos/química , Calor , Imagenología Tridimensional , Límite de Detección , Microscopía de Fuerza Atómica , Microscopía Confocal , Nebulizadores y Vaporizadores , Proyectos Piloto , Siliconas/química , Siliconas/aislamiento & purificación , Solventes/química , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de SuperficieRESUMEN
In a typical manufacturing setup for biopharmaceutical drug products, the fill and dosing pump is placed after the final sterile filtration unit in order to ensure adequate dispensing accuracy and avoid backpressure peaks. Given the sensitivity of protein molecules, peristaltic pumps are often preferred over piston pumps. However, particles may be shed from the silicone tubing employed. In this study, particle shedding and a potential turbidity increase during peristaltic pumping of water and buffer were investigated using three types of commercially available silicone tubing. In the recirculates, mainly particles of around 200 nm next to a very small fraction of particles in the lower micrometer range were found. Using 3D laser scanning microscopy, surface roughness of the inner tubing surface was found to be a determining factor for particle shedding from silicone tubing. As the propensity toward particle shedding varied between tubing types and also cannot be concluded from manufacturer's specifications, individual testing with the presented methods is recommended during tubing qualification. Choosing low abrasive tubing can help to further minimize the very low particle counts to be expected in pharmaceutical drug products.