Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 575(7783): 489-493, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31695194

RESUMEN

Many ideas have been proposed to explain the origin of bipedalism in hominins and suspension in great apes (hominids); however, fossil evidence has been lacking. It has been suggested that bipedalism in hominins evolved from an ancestor that was a palmigrade quadruped (which would have moved similarly to living monkeys), or from a more suspensory quadruped (most similar to extant chimpanzees)1. Here we describe the fossil ape Danuvius guggenmosi (from the Allgäu region of Bavaria) for which complete limb bones are preserved, which provides evidence of a newly identified form of positional behaviour-extended limb clambering. The 11.62-million-year-old Danuvius is a great ape that is dentally most similar to Dryopithecus and other European late Miocene apes. With a broad thorax, long lumbar spine and extended hips and knees, as in bipeds, and elongated and fully extended forelimbs, as in all apes (hominoids), Danuvius combines the adaptations of bipeds and suspensory apes, and provides a model for the common ancestor of great apes and humans.


Asunto(s)
Fósiles , Hominidae/clasificación , Hominidae/fisiología , Locomoción , Filogenia , Posición de Pie , Animales , Extremidades/anatomía & histología , Femenino , Hominidae/anatomía & histología , Humanos , Masculino , Tibia/anatomía & histología , Cúbito/anatomía & histología
2.
J Hum Evol ; 138: 102687, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31759256

RESUMEN

We report on a computer-based reconstruction of a well-preserved ape skull from late Miocene deposits in Rudabánya, Hungary. Based on micro-computed tomographic scans of the original Rudapithecus hungaricus partial cranium RUD 200 and the associated mandible RUD 212 we realign displaced bone fragments, and reconstruct the shape of the upper and lower jaws guided by occlusal fingerprint analysis of dental wear patterns. We apply geometric morphometric methods based on several hundred landmarks and sliding semilandmarks to estimate missing data, and create multiple reconstructions of the specimen. We then compare the reconstructed overall cranial shape, as well as the volume and shape of the endocast, with extant primates. Multiple reconstructions of RUD 200 yield an average endocranial volume of 234 cc (S.D.: 9 cc; range: 221-247 cc). RUD 200 is most similar to African apes in overall cranial shape, but in a statistical analysis of endocranial shape the specimen falls closest to extant hylobatids. Our data suggest that R. hungaricus from the late Miocene in Europe displays aspects of the overall cranial geometry typical of extant African great apes, but it does not show an evolutionary reorganization of the brain evident in Pan, Gorilla, and Pongo.


Asunto(s)
Fósiles/anatomía & histología , Hominidae/anatomía & histología , Cráneo/anatomía & histología , Animales , Evolución Biológica , Femenino , Hungría
3.
Am J Primatol ; 82(9): e23175, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32696564

RESUMEN

Although hylobatids are the most speciose of the living apes, their morphological interspecies and intraspecies variation remains poorly understood. Here, we assess mandibular shape variation in two species of Hylobates, white-handed (Hylobates lar) and black-handed (Hylobates agilis) gibbons. Using 71 three-dimensional landmarks to quantify mandibular shape, interspecies and intraspecies variation and geographic patterns of mandibular shape are examined in a mixed sex sample of adult H. lar and H. agilis through generalized Procrustes analysis, Procrustes analysis of variance, and principal components analysis. We find that relative to H. agilis, H. lar exhibits a higher amount of variation in mandibular shape. Both species demonstrate similar allometric patterns in mandibular shape. We also highlight a geographic pattern in mandibular shape variation. Compared to mainland hylobatids, insular hylobatids have relatively lower, more posteriorly oriented, and anteroposteriorly wider mandibular condyles, with an increased distance between the condyles and the coronoid processes. This geographic pattern could reflect differences in functional demands on the mandible during mastication and/or could be driven by factors often associated with evolutionary pressures of island populations relative to mainland populations. The findings of this study highlight how little is known about Hylobates morphological variation and how important this is for using Hylobates to help interpret the primate fossil record. Understanding interspecific and intraspecific variation in extant primates is vital to interpreting variation in the primate fossil record.


Asunto(s)
Hylobates/anatomía & histología , Mandíbula/anatomía & histología , Animales , Femenino , Hylobates/clasificación , Islas , Masculino , Caracteres Sexuales , Especificidad de la Especie
4.
J Hum Evol ; 136: 102649, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31542560

RESUMEN

The fossil record of middle and late Miocene Eurasian hominoids has expanded considerably over the past few decades, particularly with the recovery of numerous isolated teeth and jaws. Scholars have turned to assessments of internal tooth structure and growth to make sense of the evolutionary radiations of these primates as well as their affinities to the living great apes (hominids). Here we characterize full-dentition enamel thickness and dental development in several juvenile Rudapithecus hungaricus individuals using multiple imaging modalities. Relative enamel thickness (RET) values for the anterior teeth and premolars of Rudapithecus are broadly akin to those of gorillas and chimpanzees and are thinner than those of orangutans. First molar RET values are most similar to chimpanzees, while posterior molar values are closer to thicker-enameled orangutans. When compared to Miocene hominoids, Rudapithecus shows an intermediate molar RET condition that is especially similar to other dryopithecines. Long-period line periodicity values are comparable to African apes and most Miocene hominoids, and lower than living and fossil orangutans. The mean cuspal daily secretion rate is similar to that of several other Miocene hominoids but is greater than extant great apes. Cusp-specific molar crown formation times generally exceed those of chimpanzees, are lower than those of orangutans, and are broadly like those of other Miocene apes. While Rudapithecus appears to have a somewhat unique pattern of enamel thickness and dental development relative to individual great ape genera, these structural and developmental features are consistent with its designation as a hominid.


Asunto(s)
Esmalte Dental/anatomía & histología , Fósiles/anatomía & histología , Hominidae/anatomía & histología , Hominidae/crecimiento & desarrollo , Diente/crecimiento & desarrollo , Animales , Hungría , Diente/anatomía & histología
5.
J Hum Evol ; 108: 161-175, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28622928

RESUMEN

The chronology of dental development and life history of primitive catarrhines provides a crucial comparative framework for understanding the evolution of hominoids and Old World monkeys. Among the extinct groups of catarrhines are the pliopithecoids, with no known descendants. Anapithecus hernyaki is a medium-size stem catarrhine known from Austria, Hungary and Germany around 10 Ma, and represents a terminal lineage of a clade predating the divergence of hominoids and cercopithecoids, probably more than 30 Ma. In a previous study, Anapithecus was characterized as having fast dental development. Here, we used non-destructive propagation phase contrast synchrotron micro-tomography to image several dental microstructural features in the mixed mandibular dentition of RUD 9, the holotype of A. hernyaki. We estimate its age at death to be 1.9 years and describe the pattern, sequence and timing of tooth mineralization. Our results do not support any simplistic correlation between body mass and striae periodicity, since RUD 9 has a 3-day periodicity, which was previously thought unlikely based on body mass estimates in Anapithecus. We demonstrate that the teeth in RUD 9 grew even faster and initiated even earlier in development than suggested previously. Permanent first molars and the canine initiated 49 and 38 days prenatally, respectively. These results contribute to a better understanding of dental development in Anapithecus and may provide a window into the dental development of the last common ancestor of hominoids and cercopithecoids.


Asunto(s)
Fósiles/anatomía & histología , Hominidae/anatomía & histología , Diente/crecimiento & desarrollo , Factores de Edad , Animales , Austria , Alemania , Humanos , Hungría , Sincrotrones
6.
J Hum Evol ; 84: 42-61, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25962549

RESUMEN

For more than 80 years, Proconsul has held a pivotal position in interpretations of catarrhine evolution and hominoid diversification in East Africa. The majority of what we 'know' about Proconsul, however, derives from abundant younger fossils found at the Kisingiri localities on Rusinga and Mfangano Islands rather than from the smaller samples found at Koru--the locality of the type species, Proconsul africanus--and other Tinderet deposits. One outcome of this is seen in recent attempts to expand the genus "Ugandapithecus" (considered here a junior subjective synonym of Proconsul), wherein much of the Tinderet sample was referred to that genus based primarily on differentiating it from the Kisingiri specimens rather than from the type species, P. africanus. This and other recent taxonomic revisions to Proconsul prompted us to undertake a systematic review of dentognathic specimens attributed to this taxon. Results of our study underscore and extend the substantive distinction of Tinderet and Ugandan Proconsul (i.e., Proconsul sensu stricto) from the Kisingiri fossils, the latter recognized here as a new genus. Specimens of the new genus are readily distinguished from Proconsul sensu stricto by morphology preserved in the P. africanus holotype, but also in I(1)s, lower incisors, upper and lower canines, and especially mandibular characteristics. A number of these differences are more advanced among Kisingiri specimens in the direction of crown hominoids. Proconsul sensu stricto is characterized by a suite of unique features that strongly unite the included species as a clade. There have been decades of contentious debate over the phylogenetic placement of Proconsul (sensu lato), due in part to there being a mixture of primitive and more advanced morphology within the single genus. By recognizing two distinct clades that, in large part, segregate these character states, we believe that better phylogenetic resolution can be achieved.


Asunto(s)
Catarrinos/clasificación , Fósiles , África Oriental , Animales , Evolución Biológica , Catarrinos/anatomía & histología , Fósiles/anatomía & histología , Filogenia
7.
J Hum Evol ; 65(6): 704-14, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24034983

RESUMEN

Rudabánya is rare among Eurasian Miocene fossil primate localities in preserving both a hominid and pliopithecoid, and as such provides the unique opportunity to reconstruct the nature of sympatry and niche partitioning in these taxa. Rudapithecus and Anapithecus have similar locomotor and positional behavior and overlapping body mass ranges. While prior analyses of molar occlusal anatomy and microwear identify Rudapithecus as a soft-object frugivore, reconstructing the dietary behavior of Anapithecus has been more problematic. This taxon has been interpreted to be more folivorous by some, and more frugivorous by others. Here, we use high-resolution polynomial curve fitting (HR-PCF) to quantify and evaluate the mesiodistal and cervico-incisal curvatures of the incisor crowns of Rudapithecus and Anapithecus to identify diet-specific morphological variation in these taxa. Results are consistent with the interpretation that Anapithecus and Rudapithecus were primarily frugivorous and had diets that included similar resource types. However, Anapithecus may have consumed greater amounts of foliage, similar to extant mixed folivore-frugivores (i.e., Gorilla gorilla gorilla, Symphalangus syndactylus), while Rudapithecus generated elevated compressive loads in the incisor region consistent with a specialized role for the anterior dentition in food processing (i.e., removal of tough protective fruit pericarps). We interpret these findings in light of the paleoecology at Rudabánya and conclude that, if these taxa were indeed sympatric, Anapithecus may have used additional leaf consumption as a seasonal fallback resource to avoid direct competition with Rudapithecus. Conversely, Rudapithecus may have relied on less preferred and harder fruiting resources as a seasonal fallback resource during periods of fruit scarcity.


Asunto(s)
Catarrinos/anatomía & histología , Catarrinos/fisiología , Dieta , Ecosistema , Fósiles , Incisivo/anatomía & histología , Animales , Evolución Biológica , Hominidae , Hungría , Simpatría
8.
J Hum Evol ; 64(2): 151-60, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23352561

RESUMEN

Dental arch reconstructions present as much of a challenge in paleoanthropology as in orthodontics and maxillo-facial surgery. Dentists and dental technicians know that it is very difficult to find the precise physiological crown positions that will yield individually correct occlusal kinematics in living individuals, and this difficulty is compounded by damage and deformation in fossil specimens. Typically, dental arch reconstructions of fossils are not validated, although a functionally correct reconstruction is of undoubted importance for accurate morphological descriptions and comparative studies of fossil dentitions. Here we describe a new method for functional dental arch reconstruction derived from detailed wear facet mapping (Occlusal Fingerprint Analysis, OFA) and dental-technical approaches. OFA was used to restore the entire dental arches of the most complete late Miocene fossil great ape dentition, that of Rudapithecus hungaricus, from Rudabánya in Hungary. Dental stone casts of the maxillary and mandibular dentition were repositioned in a dental articulator. The correct alignment of the tooth crowns was monitored by physically and virtually testing the tooth contacts during occlusal movements. The characteristic distribution pattern of the individual macrowear facets strongly constrains the antagonistic crown relationships in the Rudabánya specimen. We propose that the method used to reconstruct the functional dental arches of R. hungaricus, derived from kinematic evidence encoded in macrowear patterns, can be used as a reliable foundation for dental and facial restorations in fossils, and for individual occlusal crown morphology and dental arch reconstructions in modern dentistry and prosthetics.


Asunto(s)
Arco Dental/anatomía & histología , Hominidae/anatomía & histología , Paleodontología/métodos , Desgaste de los Dientes , Animales , Fenómenos Biomecánicos , Hungría
9.
Evol Anthropol ; 21(1): 10-23, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22307721

RESUMEN

In 1871, Darwin famously opined, "In each great region of the world the living mammals are closely related to the extinct species of the same region. It is therefore probable that Africa was formerly inhabited by extinct apes closely allied to the gorilla and chimpanzee; and as these two species are now man's nearest allies, it is somewhat more probable that our early progenitors lived on the African continent than elsewhere." Although this quote is frequently recalled today, Darwin's next line is rarely acknowledged: "But it is useless to speculate on this subject, for an ape nearly as large as a man, namely the Dryopithecus of Lartet, which was closely allied to the anthropomorphous Hylobates, existed in Europe during the Upper Miocene period; and since so remote a period the earth has certainly undergone many great revolutions, and there has been ample time for migration on the largest scale."


Asunto(s)
Evolución Biológica , Fósiles , Hominidae/anatomía & histología , Hominidae/fisiología , África , Animales , Huesos , Europa (Continente) , Femenino , Humanos , Masculino , Paleontología , Diente
10.
PLoS One ; 12(5): e0177127, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28531170

RESUMEN

The split of our own clade from the Panini is undocumented in the fossil record. To fill this gap we investigated the dentognathic morphology of Graecopithecus freybergi from Pyrgos Vassilissis (Greece) and cf. Graecopithecus sp. from Azmaka (Bulgaria), using new µCT and 3D reconstructions of the two known specimens. Pyrgos Vassilissis and Azmaka are currently dated to the early Messinian at 7.175 Ma and 7.24 Ma. Mainly based on its external preservation and the previously vague dating, Graecopithecus is often referred to as nomen dubium. The examination of its previously unknown dental root and pulp canal morphology confirms the taxonomic distinction from the significantly older northern Greek hominine Ouranopithecus. Furthermore, it shows features that point to a possible phylogenetic affinity with hominins. G. freybergi uniquely shares p4 partial root fusion and a possible canine root reduction with this tribe and therefore, provides intriguing evidence of what could be the oldest known hominin.


Asunto(s)
Hominidae/clasificación , Raíz del Diente/anatomía & histología , Microtomografía por Rayos X/métodos , Animales , Evolución Biológica , Bulgaria , Dentición , Fósiles , Grecia , Hominidae/anatomía & histología , Modelos Anatómicos , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA