RESUMEN
Calcium/calmodulin (CaM)-dependent protein kinase kinase 2 (CaMKK2) regulates bone remodeling through its effects on osteoblasts and osteoclasts. However, its role in osteocytes, the most abundant bone cell type and the master regulator of bone remodeling, remains unknown. Here we report that the conditional deletion of CaMKK2 from osteocytes using Dentine matrix protein 1 (Dmp1)-8kb-Cre mice led to enhanced bone mass only in female mice owing to a suppression of osteoclasts. Conditioned media isolated from female CaMKK2-deficient osteocytes inhibited osteoclast formation and function in in vitro assays, indicating a role for osteocyte-secreted factors. Proteomics analysis revealed significantly higher levels of extracellular calpastatin, a specific inhibitor of calcium-dependent cysteine proteases calpains, in female CaMKK2 null osteocyte conditioned media, compared to media from female control osteocytes. Further, exogenously added non-cell permeable recombinant calpastatin domain I elicited a marked, dose-dependent inhibition of female wild-type osteoclasts and depletion of calpastatin from female CaMKK2-deficient osteocyte conditioned media reversed the inhibition of matrix resorption by osteoclasts. Our findings reveal a novel role for extracellular calpastatin in regulating female osteoclast function and unravel a novel CaMKK2-mediated paracrine mechanism of osteoclast regulation by female osteocytes.
Asunto(s)
Osteoclastos , Osteocitos , Animales , Femenino , Ratones , Calcio/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Medios de Cultivo Condicionados/farmacología , Osteoclastos/metabolismo , Osteocitos/metabolismo , Caracteres SexualesRESUMEN
Type 2 diabetes (T2D) is on the rise worldwide and is associated with various complications in the oral cavity. Using an adult-onset diabetes preclinical model, we demonstrated profound periodontal alterations in T2D mice, including inflamed gingiva, disintegrated periodontal ligaments (PDLs), marked alveolar bone loss, and unbalanced bone remodeling due to decreased formation and increased resorption. Notably, we observed elevated levels of the Wnt signaling inhibitor sclerostin in the alveolar bone of T2D mice. Motivated by these findings, we investigated whether a sclerostin-neutralizing antibody (Scl-Ab) could rescue the compromised periodontium in T2D mice. Administering Scl-Ab subcutaneously once a week for 4 weeks, starting 4 weeks after T2D induction, led to substantial increases in bone mass. This effect was attributed to the inhibition of osteoclasts and promotion of osteoblasts in both control and T2D mice, effectively reversing the bone loss caused by T2D. Furthermore, Scl-Ab stimulated PDL cell proliferation, partially restored the PDL fibers, and mitigated inflammation in the periodontium. Our study thus established a T2D-induced periodontitis mouse model characterized by inflammation and tissue degeneration. Scl-Ab emerged as a promising intervention to counteract the detrimental effects of T2D on the periodontium, exhibiting limited side effects on other craniofacial hard tissues.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Pérdida de Hueso Alveolar , Diabetes Mellitus Tipo 2 , Animales , Ratones , Diabetes Mellitus Tipo 2/inmunología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Pérdida de Hueso Alveolar/prevención & control , Pérdida de Hueso Alveolar/etiología , Pérdida de Hueso Alveolar/patología , Masculino , Enfermedades Periodontales/inmunología , Anticuerpos Neutralizantes/farmacología , Ligamento Periodontal/patología , Ligamento Periodontal/efectos de los fármacos , Modelos Animales de Enfermedad , Diabetes Mellitus Experimental/inmunología , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Ratones Endogámicos C57BL , Periodontitis/inmunología , Periodontitis/patología , Periodontitis/tratamiento farmacológico , Remodelación Ósea/efectos de los fármacosRESUMEN
BACKGROUND: Type 1 diabetes mellitus (T1DM) and periodontitis have long been thought to be biologically connected. Indeed, T1DM is a risk factor for periodontal disease. With the population of diabetic individuals growing, it is more important than ever to understand the negative consequences of diabetes on the periodontium and the mechanisms. The aim of this study was to find out the early effects of T1DM on the periodontium without any experimentally induced periodontitis. METHODS: We established the streptozotocin (STZ)-induced diabetic mouse model and examined the periodontium 8 weeks later by histology, molecular and cellular assays. Microcomputed tomographic (ðCT) imaging and in vivo fluorochrome labeling were also used to quantify bone volume and mineral apposition rates (MAR). RESULTS: The histologic appearance of epithelium tissue, connective tissue, and periodontal ligament in the diabetic condition was comparable with that of control mice. However, immune cell infiltration in the gingiva was dramatically elevated in the diabetic mice, which was accompanied by unmineralized connective tissue degeneration. Bone resorption activity was significantly increased in the diabetic mice, and quantitative ðCT demonstrated the bone volume, the ratio of bone volume over tissue volume, and cemento-enamel junction to alveolar bone crest (CEJ-ABC) in the diabetic condition were equivalent to those in the control group. In vivo fluorochrome labeling revealed increased MAR and bone remodeling in the diabetic mice. Further investigation found the diabetic mice had more osteoprogenitors recruited to the periodontium, allowing more bone formation to balance the enhanced bone resorption. CONCLUSIONS: STZ-induced T1DM mice, at an early stage, have elevated gingival inflammation and soft tissue degeneration and increased bone resorption; but still the alveolar bone was preserved by recruiting more osteoprogenitor cells and increasing the rate of bone formation. We conclude that inflammation and periodontitis precede alveolar bone deterioration in diabetes.
Asunto(s)
Pérdida de Hueso Alveolar , Resorción Ósea , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Gingivitis , Periodontitis , Ratones , Animales , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Experimental/complicaciones , Colorantes Fluorescentes , Gingivitis/complicaciones , Periodontitis/complicaciones , Proceso Alveolar , Inflamación , Pérdida de Hueso Alveolar/etiologíaRESUMEN
INTRODUCTION: Odontoblasts produce dentin throughout life and in response to trauma. The purpose of this study was to identify the roles of endogenous Wnt signaling in regulating the rate of dentin accumulation. METHODS: Histology, immunohistochemistry, vital dye labeling, and histomorphometric assays were used to quantify the rate of dentin accumulation as a function of age. Two strains of Wnt reporter mice were used to identify and follow the distribution and number of Wnt-responsive odontoblasts as a function of age. To show a causal relationship between dentin secretion and Wnt signaling, dentin accumulation was monitored in a strain of mice in which Wnt signaling was aberrantly elevated. RESULTS: Dentin deposition occurs throughout life, but the rate of accumulation slows with age. This decline in dentin secretion correlates with a decrease in endogenous Wnt signaling. In a genetically modified strain of mice, instead of tubular dentin, aberrantly elevated Wnt signaling resulted in accumulation of reparative dentin or osteodentin secreted from predontoblasts. CONCLUSIONS: Wnt signaling regulates dentin secretion by odontoblasts, and the formation of reparative or osteodentin is the direct consequence of elevated Wnt signaling. These preclinical data have therapeutic implications for the development of a biologically based pulp capping medicant.
Asunto(s)
Dentina , Vía de Señalización Wnt , beta Catenina , Animales , Pulpa Dental , Dentina/metabolismo , Ratones , Odontoblastos/metabolismo , OdontogénesisRESUMEN
Vertebrate teeth are attached to the jawbones using a variety of methods but in mammals, a fibrous connection is the norm. This fibrous periodontal ligament (PDL) allows teeth to move in the jawbones in response to natural eruptive forces, mastication, and orthodontic tooth movement. In some disease states the PDL either calcifies or is replaced by a mineralized tissue and the result is ankylosis, where the tooth is fused to the alveolar bone. To understand how the PDL maintains this fibrous state, we examined a strain of mice in which tooth movement is arrested. DaßcatOt mice express a stabilized form of ß-catenin in DMP1-positive alveolar bone osteocytes and cementocytes, which results in elevated Wnt signaling throughout the periodontium. As a consequence, there is an accrual of massive amounts of cellular cementum and alveolar bone, the PDL itself calcifies and teeth become ankylosed. These data suggest that to maintain its fibrous nature, Wnt signaling must normally be repressed in the PDL space.
Asunto(s)
Cemento Dental/metabolismo , Anquilosis del Diente/metabolismo , Vía de Señalización Wnt , Animales , Cemento Dental/diagnóstico por imagen , Ratones , Mutación/genética , Osteoclastos/metabolismo , Ligamento Periodontal/diagnóstico por imagen , Ligamento Periodontal/metabolismo , Anquilosis del Diente/diagnóstico por imagen , Erupción Dental , beta Catenina/metabolismoRESUMEN
Primary hyperparathyroidism (PHPT) is a condition where elevated PTH levels lead to bone loss, in part through increased production of the osteoclastogenic factor IL-17A, by bone marrow (BM) T-helper 17 (Th17) cells, a subset of helper CD4+ T cells. In animals, PHPT is modeled by continuous PTH treatment (cPTH). In mice, an additional critical action of cPTH is the capacity to increase the production of RANKL by osteocytes. However, a definitive link between IL-17A and osteocytic expression of RANKL has not been made. Here we show that cPTH fails to induce cortical and trabecular bone loss and causes less intense bone resorption in conditional knock-out (IL-17RAΔOCY ) male and female mice lacking the expression of IL-17A receptor (IL-17RA) in dentin matrix protein 1 (DMP1)-8kb-Cre-expressing cells, which include osteocytes and some osteoblasts. Therefore, direct IL-17RA signaling in osteoblasts/osteocytes is required for cPTH to exert its bone catabolic effects. In addition, in vivo, silencing of IL-17RA signaling in in DMP1-8kb-expressing cells blunts the capacity of cPTH to stimulate osteocytic RANKL production, indicating that cPTH augments osteocytic RANKL expression indirectly, via an IL-17A/IL-17RA-mediated mechanism. Thus, osteocytic production of RANKL and T cell production of IL-17A are both critical for the bone catabolic activity of cPTH. © 2018 American Society for Bone and Mineral Research.
Asunto(s)
Resorción Ósea/metabolismo , Osteocitos/metabolismo , Hormona Paratiroidea/metabolismo , Ligando RANK/biosíntesis , Receptores de Interleucina-17/metabolismo , Transducción de Señal , Animales , Resorción Ósea/genética , Resorción Ósea/patología , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Hiperparatiroidismo Primario/genética , Hiperparatiroidismo Primario/metabolismo , Hiperparatiroidismo Primario/patología , Interleucina-17/genética , Interleucina-17/metabolismo , Ratones , Ratones Noqueados , Osteocitos/patología , Hormona Paratiroidea/genética , Ligando RANK/genética , Receptores de Interleucina-17/genéticaRESUMEN
Osteocytes integrate the responses of bone to mechanical and hormonal stimuli by poorly understood mechanisms. We report here that mice with conditional deletion of the parathyroid hormone (PTH) receptor 1 (Pth1r) in dentin matrix protein 1 (DMP1)-8kb-expressing cells (cKO) exhibit a modest decrease in bone resorption leading to a mild increase in cancellous bone without changes in cortical bone. However, bone resorption in response to endogenous chronic elevation of PTH in growing or adult cKO mice induced by a low calcium diet remained intact, because the increased bone remodeling and bone loss was indistinguishable from that exhibited by control littermates. In contrast, the bone gain and increased bone formation in cancellous and cortical bone induced by daily injections of PTH and the periosteal bone apposition induced by axial ulna loading were markedly reduced in cKO mice compared to controls. Remarkably, however, wild-type (WT) control littermates and transgenic mice overexpressing SOST injected daily with PTH exhibit similar activation of Wnt/ß-catenin signaling, increased bone formation, and cancellous and cortical bone gain. Taken together, these findings demonstrate that Pth1r in DMP1-8kb-expressing cells is required to maintain basal levels of bone resorption but is dispensable for the catabolic action of chronic PTH elevation; and it is essential for the anabolic actions of daily PTH injections and mechanical loading. However, downregulation of Sost/sclerostin, previously shown to be required for bone anabolism induced by mechanical loading, is not required for PTH-induced bone gain, showing that other mechanisms downstream of the Pth1r in DMP1-8kb-expressing cells are responsible for the hormonal effect. © 2016 American Society for Bone and Mineral Research.
Asunto(s)
Huesos/metabolismo , Hormona Paratiroidea/farmacología , Receptor de Hormona Paratiroídea Tipo 1/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Remodelación Ósea/efectos de los fármacos , Resorción Ósea/metabolismo , Resorción Ósea/patología , Huesos/efectos de los fármacos , Huesos/patología , Regulación hacia Abajo/efectos de los fármacos , Proteínas de la Matriz Extracelular/metabolismo , Factor-23 de Crecimiento de Fibroblastos , Eliminación de Gen , Glicoproteínas/metabolismo , Péptidos y Proteínas de Señalización Intercelular , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Tamaño de los Órganos , Osteocitos/efectos de los fármacos , Osteocitos/metabolismo , Transducción de Señal/efectos de los fármacos , Soporte de PesoRESUMEN
The transgenic and knockout (KO) animals involving Fgf23 have been highly informative in defining novel aspects of mineral metabolism, but are limited by shortened lifespan, inability of spatial/temporal FGF23 control, and infertility of the global KO. To more finely test the role of systemic and genetic influences in FGF23 production, a mouse was developed that carried a floxed ("f")-Fgf23 allele (exon 2 floxed) which demonstrated in vivo recombination when bred to global-Cre transgenic mice (eIIa-cre). Mice homozygous for the recombined allele ("Δ") had undetectable serum intact FGF23, elevated serum phosphate (p < 0.05), and increased kidney Cyp27b1 mRNA (p < 0.05), similar to global Fgf23-KO mice. To isolate cellular FGF23 responses during phosphate challenge, Fgf23(Δ/f) mice were mated with early osteoblast type Iα1 collagen 2.3-kb promoter-cre mice (Col2.3-cre) and the late osteoblast/early osteocyte Dentin matrix protein-1-cre (Dmp1-cre). Fgf23(Δ/f) /Col2.3-cre(+) and Fgf23(Δ/f) /Dmp1-cre(+) exhibited reduced baseline serum intact FGF23 versus controls. After challenge with high-phosphate diet Cre(-) mice had 2.1-fold to 2.5-fold increased serum FGF23 (p < 0.01), but Col2.3-cre(+) mice had no significant increase, and Dmp1-cre(+) mice had only a 37% increase (p < 0.01) despite prevailing hyperphosphatemia in both models. The Fgf23(Δ/f) /Col2.3-cre was bred onto the Hyp (murine X-linked hypophosphatemia [XLH] model) genetic background to test the contribution of osteoblasts and osteocytes to elevated FGF23 and Hyp disease phenotypes. Whereas Hyp mice maintained inappropriately elevated FGF23 considering their marked hypophosphatemia, Hyp/Fgf23(Δ/f) /Col2.3-cre(+) mice had serum FGF23 <4% of Hyp (p < 0.01), and this targeted restriction normalized serum phosphorus and ricketic bone disease. In summary, deleting FGF23 within early osteoblasts and osteocytes demonstrated that both cell types contribute to baseline circulating FGF23 concentrations, and that targeting osteoblasts/osteocytes for FGF23 production can modify systemic responses to changes in serum phosphate concentrations and rescue the Hyp genetic syndrome. © 2016 American Society for Bone and Mineral Research.