Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Annu Rev Med ; 61: 91-104, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20059333

RESUMEN

In contrast to the regulation of calcium homeostasis, which has been extensively studied over the past several decades, relatively little is known about the regulation of phosphate homeostasis. Fibroblast growth factor 23 (FGF23) is part of a previously unrecognized hormonal bone-parathyroid-kidney axis, which is modulated by PTH, 1,25(OH)(2)-vitamin D (1,25(OH)(2)D), dietary and serum phosphorus levels. Synthesis and secretion of FGF23 by osteocytes are positively regulated by 1,25(OH)(2)D and serum phosphorus and negatively regulated, through yet unknown mechanisms, by the phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX) and by dentin matrix protein 1 (DMP1). In turn, FGF23 inhibits the synthesis of 1,25(OH)(2)D, and it may negatively regulate the secretion of parathyroid hormone (PTH) from the parathyroid glands. However, FGF23 synergizes with PTH to increase renal phosphate excretion by reducing expression of the renal sodium-phosphate cotransporters NaPi-IIa and NaPi-IIc in the proximal tubules. Most insights gained into the regulation of phosphate homeostasis by these factors are derived from human genetic disorders and genetically engineered mice, which are reviewed in this paper.


Asunto(s)
Calcitriol/fisiología , Factores de Crecimiento de Fibroblastos/fisiología , Homeostasis/fisiología , Hormona Paratiroidea/fisiología , Fosfatos/sangre , Trastornos del Metabolismo del Fósforo/etiología , Factor-23 de Crecimiento de Fibroblastos , Humanos
2.
Adv Exp Med Biol ; 728: 41-64, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22396161

RESUMEN

Fibroblast growth factor 23 (FGF23) is part of a previously unrecognized hormonal bone-parathyroid-kidney axis, which is modulated by 1,25(OH)(2)-vitamin D (1,25(OH)(2)D), dietary and circulating phosphate and possibly PTH. FGF23 was discovered as the humoral factor in tumors that causes hypophosphatemia and osteomalacia and through the identification of a mutant form of FGF23 that leads to autosomal dominant hypophosphatemic rickets (ADHR), a rare genetic disorder. FGF23 appears to be mainly secreted by osteocytes where its expression is up-regulated by 1,25(OH)(2)D and probably by increased serum phosphate levels. Its synthesis and secretion is reduced through yet unknown mechanisms that involve the phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX), dentin matrix protein 1 (DMP1) and ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1). Consequently, loss-of-function mutations in these genes underlie hypophosphatemic disorders that are either X-linked or autosomal recessive. Impaired O-glycosylation of FGF23 due to the lack of UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyl-transferase 3 (GALNT3) or due to certain homozygous FGF23 mutations results in reduced secretion of intact FGF23 and leads to familial hyperphosphatemic tumoral calcinosis. FGF23 acts through FGF-receptors and the coreceptor Klotho to reduce 1,25(OH)(2)D synthesis in the kidney and probably the synthesis of parathyroid hormone (PTH) by the parathyroid glands. It furthermore synergizes with PTH to increase renal phosphate excretion by reducing expression of the sodium-phosphate cotransporters NaPi-IIa and NaPi-IIc in the proximal tubules. Loss-of-function mutations in these two transporters lead to autosomal recessive Fanconi syndrome or to hereditary hypophosphatemic rickets with hypercalciuria, respectively.


Asunto(s)
Anomalías Múltiples/metabolismo , Factores de Crecimiento de Fibroblastos , Enfermedades Renales/metabolismo , Fosfatos/metabolismo , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Anomalías Múltiples/terapia , Animales , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/biosíntesis , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Homeostasis/genética , Humanos , Enfermedades Renales/diagnóstico , Enfermedades Renales/genética , Enfermedades Renales/terapia , Síndrome
4.
Endocr Dev ; 16: 133-56, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19494665

RESUMEN

Phosphate is absorbed from the diet in the gut, stored as hydroxyapatite in the skeleton, and excreted with the urine. The balance between these compartments determines the circulating phosphate concentration. Fibroblast growth factor 23 (FGF23) has recently been discovered and is part of a previously unrecognised hormonal bone-kidney axis. Phosphate-regulating gene with homologies to endopeptidases on the X chromosome, and dentin matrix protein 1 regulate the expression of FGF23 in osteocytes, which then is O-glycosylated by UDP-N-acetyl-alpha-D-galactosamine: polypeptide N-acetylgalactosaminyl-transferase 3 and secreted into the circulation. FGF23 binds with high affinity to fibroblast growth factor receptor 1c in the presence of its co-receptor Klotho. It inhibits, either directly or indirectly, reabsorption of phosphate and the synthesis of 1,25-dihydroxy-vitamin-D by the renal proximal tubule and the secretion of parathyroid hormone by the parathyroid glands. Acquired or inborn errors affecting this newly discovered hormonal system can lead to abnormal phosphate homeostasis and/or tissue mineralisation. This chapter will provide an update on the current knowledge of the pathophysiology, the clinical presentation, diagnostic evaluation and therapy of the disorders of phosphate homeostasis and tissue mineralisation.


Asunto(s)
Homeostasis/fisiología , Errores Innatos del Metabolismo/metabolismo , Minerales/metabolismo , Fosfatos/fisiología , Calcinosis/etiología , Niño , Factor-23 de Crecimiento de Fibroblastos , Pruebas Genéticas , Humanos , Hiperfosfatemia/sangre , Hiperfosfatemia/diagnóstico , Litiasis/etiología , Errores Innatos del Metabolismo/epidemiología , Errores Innatos del Metabolismo/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA