Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 95(5): 590-601, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25439726

RESUMEN

Using a combination of exome sequencing and linkage analysis, we investigated an English family with two affected siblings in their 40s with recessive Charcot-Marie Tooth disease type 2 (CMT2). Compound heterozygous mutations in the immunoglobulin-helicase-µ-binding protein 2 (IGHMBP2) gene were identified. Further sequencing revealed a total of 11 CMT2 families with recessively inherited IGHMBP2 gene mutations. IGHMBP2 mutations usually lead to spinal muscular atrophy with respiratory distress type 1 (SMARD1), where most infants die before 1 year of age. The individuals with CMT2 described here, have slowly progressive weakness, wasting and sensory loss, with an axonal neuropathy typical of CMT2, but no significant respiratory compromise. Segregating IGHMBP2 mutations in CMT2 were mainly loss-of-function nonsense in the 5' region of the gene in combination with a truncating frameshift, missense, or homozygous frameshift mutations in the last exon. Mutations in CMT2 were predicted to be less aggressive as compared to those in SMARD1, and fibroblast and lymphoblast studies indicate that the IGHMBP2 protein levels are significantly higher in CMT2 than SMARD1, but lower than controls, suggesting that the clinical phenotype differences are related to the IGHMBP2 protein levels.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Exoma/genética , Modelos Moleculares , Mutación Missense/genética , Fenotipo , Adulto , Secuencia de Bases , Enfermedad de Charcot-Marie-Tooth/patología , Mapeo Cromosómico , Femenino , Haplotipos/genética , Humanos , Datos de Secuencia Molecular , Linaje , Mapeo de Interacción de Proteínas , Análisis de Secuencia de ADN , Nervio Sural/patología
2.
J Neurol Neurosurg Psychiatry ; 88(7): 575-585, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28501821

RESUMEN

OBJECTIVES: To analyse and describe the clinical and genetic spectrum of Charcot-Marie-Tooth disease (CMT) caused by mutations in the neurofilament light polypeptide gene (NEFL). METHODS: Combined analysis of newly identified patients with NEFL-related CMT and all previously reported cases from the literature. RESULTS: Five new unrelated patients with CMT carrying the NEFL mutations P8R and N98S and the novel variant L311P were identified. Combined data from these cases and 62 kindreds from the literature revealed four common mutations (P8R, P22S, N98S and E396K) and three mutational hotspots accounting for 37 (55%) and 50 (75%) kindreds, respectively. Eight patients had de novo mutations. Loss of large-myelinated fibres was a uniform feature in a total of 21 sural nerve biopsies and 'onion bulb' formations and/or thin myelin sheaths were observed in 14 (67%) of them. The neurophysiological phenotype was broad but most patients with E90K and N98S had upper limb motor conduction velocities <38 m/s. Age of onset was ≤3 years in 25 cases. Pyramidal tract signs were described in 13 patients and 7 patients were initially diagnosed with or tested for inherited ataxia. Patients with E90K and N98S frequently presented before age 3 years and developed hearing loss or other neurological features including ataxia and/or cerebellar atrophy on brain MRI. CONCLUSIONS: NEFL-related CMT is clinically and genetically heterogeneous. Based on this study, however, we propose mutational hotspots and relevant clinical-genetic associations that may be helpful in the evaluation of NEFL sequence variants and the differential diagnosis with other forms of CMT.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Mutación/genética , Proteínas de Neurofilamentos/genética , Axones/patología , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/patología , Genotipo , Humanos , Linaje , Fenotipo , Nervio Sural/patología
3.
Rare Dis ; 4(1): e1198458, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27500074

RESUMEN

We previously demonstrated elevated brain iron levels in myelinated structures and associated cells in a hemochromatosis Hfe (-/-) xTfr2 (mut) mouse model. This was accompanied by altered expression of a group of myelin-related genes, including a suite of genes causatively linked to the rare disease family 'neurodegeneration with brain iron accumulation' (NBIA). Expanded data mining and ontological analyses have now identified additional myelin-related transcriptome changes in response to brain iron loading. Concordance between the mouse transcriptome changes and human myelin-related gene expression networks in normal and NBIA basal ganglia testifies to potential clinical relevance. These analyses implicate, among others, genes linked to various rare central hypomyelinating leukodystrophies and peripheral neuropathies including Pelizaeus-Merzbacher-like disease and Charcot-Marie-Tooth disease as well as genes linked to other rare neurological diseases such as Niemann-Pick disease. The findings may help understand interrelationships of iron and myelin in more common conditions such as hemochromatosis, multiple sclerosis and various psychiatric disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA