Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(13): e2319998121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38513096

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) are monocopper enzymes that oxidatively degrade various polysaccharides, such as cellulose. Despite extensive research on this class of enzymes, the role played by their C-terminal regions predicted to be intrinsically disordered (dCTR) has been overlooked. Here, we investigated the function of the dCTR of an LPMO, called CoAA9A, up-regulated during plant infection by Colletotrichum orbiculare, the causative agent of anthracnose. After recombinant production of the full-length protein, we found that the dCTR mediates CoAA9A dimerization in vitro, via a disulfide bridge, a hitherto-never-reported property that positively affects both binding and activity on cellulose. Using SAXS experiments, we show that the homodimer is in an extended conformation. In vivo, we demonstrate that gene deletion impairs formation of the infection-specialized cell called appressorium and delays penetration of the plant. Using immunochemistry, we show that the protein is a dimer not only in vitro but also in vivo when secreted by the appressorium. As these peculiar LPMOs are also found in other plant pathogens, our findings open up broad avenues for crop protection.


Asunto(s)
Proteínas Fúngicas , Polisacáridos , Multimerización de Proteína , Dispersión del Ángulo Pequeño , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Difracción de Rayos X , Polisacáridos/metabolismo , Celulosa/metabolismo
2.
Biophys J ; 123(9): 1139-1151, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38571309

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) catalyze a reaction that is crucial for the biological decomposition of various biopolymers and for the industrial conversion of plant biomass. Despite the importance of LPMOs, the exact molecular-level nature of the reaction mechanism is still debated today. Here, we investigated the pH-dependent conformation of a second-sphere histidine (His) that we call the stacking histidine, which is conserved in fungal AA9 LPMOs and is speculated to assist catalysis in several of the LPMO reaction pathways. Using constant-pH and accelerated molecular dynamics simulations, we monitored the dynamics of the stacking His in different protonation states for both the resting Cu(II) and active Cu(I) forms of two fungal LPMOs. Consistent with experimental crystallographic and neutron diffraction data, our calculations suggest that the side chain of the protonated and positively charged form is rotated out of the active site toward the solvent. Importantly, only one of the possible neutral states of histidine (HIE state) is observed in the stacking orientation at neutral pH or when bound to cellulose. Our data predict that, in solution, the stacking His may act as a stabilizer (via hydrogen bonding) of the Cu(II)-superoxo complex after the LPMO-Cu(I) has reacted with O2 in solution, which, in fine, leads to H2O2 formation. Also, our data indicate that the HIE-stacking His is a poor acid/base catalyst when bound to the substrate and, in agreement with the literature, may play an important stabilizing role (via hydrogen bonding) during the peroxygenase catalysis. Our study reveals the pH titration midpoint values of the pH-dependent orientation of the stacking His should be considered when modeling and interpreting LPMO reactions, whether it be for classical LPMO kinetics or in industry-oriented enzymatic cocktails, and for understanding LPMO behavior in slightly acidic natural processes such as fungal wood decay.


Asunto(s)
Histidina , Oxigenasas de Función Mixta , Simulación de Dinámica Molecular , Histidina/química , Histidina/metabolismo , Concentración de Iones de Hidrógeno , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Dominio Catalítico , Polisacáridos/metabolismo , Polisacáridos/química , Cobre/química , Cobre/metabolismo , Celulosa/metabolismo , Celulosa/química
3.
Appl Environ Microbiol ; 89(10): e0057323, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37702503

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) can perform oxidative cleavage of glycosidic bonds in carbohydrate polymers (e.g., cellulose, chitin), making them more accessible to hydrolytic enzymes. While most studies have so far mainly explored the role of LPMOs in a (plant) biomass conversion context, alternative roles and paradigms begin to emerge. The AA10 LPMOs are active on chitin and/or cellulose and mostly found in bacteria and in some viruses and archaea. Interestingly, AA10-encoding genes are also encountered in some pathogenic fungi of the Ustilaginomycetes class, such as Ustilago maydis, responsible for corn smut disease. Transcriptomic studies have shown the overexpression of the AA10 gene during the infectious cycle of U. maydis. In fact, U. maydis has a unique AA10 gene that codes for a catalytic domain appended with a C-terminal disordered region. To date, there is no public report on fungal AA10 LPMOs. In this study, we successfully produced the catalytic domain of this LPMO (UmAA10_cd) in Pichia pastoris and carried out its biochemical characterization. Our results show that UmAA10_cd oxidatively cleaves α- and ß-chitin with C1 regioselectivity and boosts chitin hydrolysis by a GH18 chitinase from U. maydis (UmGH18A). Using a biologically relevant substrate, we show that UmAA10_cd exhibits enzymatic activity on U. maydis fungal cell wall chitin and promotes its hydrolysis by UmGH18A. These results represent an important step toward the understanding of the role of LPMOs in the fungal cell wall remodeling process during the fungal life cycle.IMPORTANCELytic polysaccharide monooxygenases (LPMOs) have been mainly studied in a biotechnological context for the efficient degradation of recalcitrant polysaccharides. Only recently, alternative roles and paradigms begin to emerge. In this study, we provide evidence that the AA10 LPMO from the phytopathogen Ustilago maydis is active against fungal cell wall chitin. Given that chitin-active LPMOs are commonly found in microbes, it is important to consider fungal cell wall as a potential target for this enigmatic class of enzymes.


Asunto(s)
Quitina , Polisacáridos , Quitina/metabolismo , Polisacáridos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Celulosa/metabolismo , Pared Celular/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(3): 1504-1513, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31907317

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) are a recently discovered class of monocopper enzymes broadly distributed across the tree of life. Recent reports indicate that LPMOs can use H2O2 as an oxidant and thus carry out a novel type of peroxygenase reaction involving unprecedented copper chemistry. Here, we present a combined computational and experimental analysis of the H2O2-mediated reaction mechanism. In silico studies, based on a model of the enzyme in complex with a crystalline substrate, suggest that a network of hydrogen bonds, involving both the enzyme and the substrate, brings H2O2 into a strained reactive conformation and guides a derived hydroxyl radical toward formation of a copper-oxyl intermediate. The initial cleavage of H2O2 and subsequent hydrogen atom abstraction from chitin by the copper-oxyl intermediate are the main energy barriers. Stopped-flow fluorimetry experiments demonstrated that the priming reduction of LPMO-Cu(II) to LPMO-Cu(I) is a fast process compared to the reoxidation reactions. Using conditions resulting in single oxidative events, we found that reoxidation of LPMO-Cu(I) is 2,000-fold faster with H2O2 than with O2, the latter being several orders of magnitude slower than rates reported for other monooxygenases. The presence of substrate accelerated reoxidation by H2O2, whereas reoxidation by O2 became slower, supporting the peroxygenase paradigm. These insights into the peroxygenase nature of LPMOs will aid in the development and application of enzymatic and synthetic copper catalysts and contribute to a further understanding of the roles of LPMOs in nature, varying from biomass conversion to chitinolytic pathogenesis-defense mechanisms.


Asunto(s)
Proteínas Bacterianas/metabolismo , Quitina/metabolismo , Oxigenasas de Función Mixta/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Celulosa/química , Celulosa/metabolismo , Quitina/química , Cobre/química , Cobre/metabolismo , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética , Oxidación-Reducción , Serratia marcescens/enzimología
5.
New Phytol ; 233(6): 2380-2396, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34918344

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) constitute an enigmatic class of enzymes, the discovery of which has opened up a new arena of riveting research. LPMOs can oxidatively cleave the glycosidic bonds found in carbohydrate polymers enabling the depolymerisation of recalcitrant biomasses, such as cellulose or chitin. While most studies have so far mainly explored the role of LPMOs in a (plant) biomass conversion context, alternative roles and paradigms begin to emerge. In the present review, we propose a historical perspective of LPMO research providing a succinct overview of the major achievements of LPMO research over the past decade. This journey through LPMOs landscape leads us to dive into the emerging biological functions of LPMOs and LPMO-like proteins. We notably highlight roles in fungal and oomycete plant pathogenesis (e.g. potato late blight), but also in mutualistic/commensalism symbiosis (e.g. ectomycorrhizae). We further present the potential importance of LPMOs in other microbial pathogenesis including diseases caused by bacteria (e.g. pneumonia), fungi (e.g. human meningitis), oomycetes and viruses (e.g. entomopox), as well as in (micro)organism development (including several plant pests). Our assessment of the literature leads to the formulation of outstanding questions, promising for the coming years exciting research and discoveries on these moonlighting proteins.


Asunto(s)
Oxigenasas de Función Mixta , Polisacáridos , Celulosa/metabolismo , Quitina/metabolismo , Hongos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Polisacáridos/metabolismo
6.
Nat Chem Biol ; 16(3): 345-350, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31932718

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes that play a key role in the oxidative degradation of various biopolymers such as cellulose and chitin. While hunting for new LPMOs, we identified a new family of proteins, defined here as X325, in various fungal lineages. The three-dimensional structure of X325 revealed an overall LPMO fold and a His brace with an additional Asp ligand to Cu(II). Although LPMO-type activity of X325 members was initially expected, we demonstrated that X325 members do not perform oxidative cleavage of polysaccharides, establishing that X325s are not LPMOs. Investigations of the biological role of X325 in the ectomycorrhizal fungus Laccaria bicolor revealed exposure of the X325 protein at the interface between fungal hyphae and tree rootlet cells. Our results provide insights into a family of copper-containing proteins, which is widespread in the fungal kingdom and is evolutionarily related to LPMOs, but has diverged to biological functions other than polysaccharide degradation.


Asunto(s)
Cobre/metabolismo , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , Sitios de Unión , Celulosa/metabolismo , Quitina/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Hongos/metabolismo , Oxigenasas de Función Mixta/ultraestructura , Oxidación-Reducción , Filogenia , Polisacáridos/metabolismo
7.
J Biol Chem ; 294(50): 19349-19364, 2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31656228

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) catalyze oxidative cleavage of recalcitrant polysaccharides such as cellulose and chitin and play an important role in the enzymatic degradation of biomass. Although it is clear that these monocopper enzymes have extended substrate-binding surfaces for interacting with their fibrous substrates, the structural determinants of LPMO substrate specificity remain largely unknown. To gain additional insight into substrate specificity in LPMOs, here we generated a mutant library of a cellulose-active family AA10 LPMO from Streptomyces coelicolor A3(2) (ScLPMO10C, also known as CelS2) having multiple substitutions at five positions on the substrate-binding surface that we identified by sequence comparisons. Screening of this library using a newly-developed MS-based high-throughput assay helped identify multiple enzyme variants that contained four substitutions and exhibited significant chitinolytic activity and a concomitant decrease in cellulolytic activity. The chitin-active variants became more rapidly inactivated during catalysis than a natural chitin-active AA10 LPMO, an observation likely indicative of suboptimal substrate binding leading to autocatalytic oxidative damage of these variants. These results reveal several structural determinants of LPMO substrate specificity and underpin the notion that productive substrate binding by these enzymes is complex, depending on a multitude of amino acids located on the substrate-binding surface.


Asunto(s)
Celulosa/metabolismo , Quitina/metabolismo , Oxigenasas de Función Mixta/metabolismo , Polisacáridos/metabolismo , Ingeniería de Proteínas , Streptomyces coelicolor/enzimología , Oxigenasas de Función Mixta/genética , Modelos Moleculares , Especificidad por Sustrato
8.
Appl Environ Microbiol ; 85(5)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30578267

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that perform oxidative cleavage of recalcitrant polysaccharides. We have purified and characterized a recombinant family AA9 LPMO, LPMO9B, from Gloeophyllum trabeum (GtLPMO9B) which is active on both cellulose and xyloglucan. Activity of the enzyme was tested in the presence of three different reductants: ascorbic acid, gallic acid, and 2,3-dihydroxybenzoic acid (2,3-DHBA). Under standard aerobic conditions typically used in LPMO experiments, the first two reductants could drive LPMO catalysis whereas 2,3-DHBA could not. In agreement with the recent discovery that H2O2 can drive LPMO catalysis, we show that gradual addition of H2O2 allowed LPMO activity at very low, substoichiometric (relative to products formed) reductant concentrations. Most importantly, we found that while 2,3-DHBA is not capable of driving the LPMO reaction under standard aerobic conditions, it can do so in the presence of externally added H2O2 At alkaline pH, 2,3-DHBA is able to drive the LPMO reaction without externally added H2O2, and this ability overlaps entirely the endogenous generation of H2O2 by GtLPMO9B-catalyzed oxidation of 2,3-DHBA. These findings support the notion that H2O2 is a cosubstrate of LPMOs and provide insight into how LPMO reactions depend on, and may be controlled by, the choice of pH and reductant.IMPORTANCE Lytic polysaccharide monooxygenases promote enzymatic depolymerization of lignocellulosic materials by microorganisms due to their ability to oxidatively cleave recalcitrant polysaccharides. The properties of these copper-dependent enzymes are currently of high scientific and industrial interest. We describe a previously uncharacterized fungal LPMO and show how reductants, which are needed to prime the LPMO by reducing Cu(II) to Cu(I) and to supply electrons during catalysis, affect enzyme efficiency and stability. The results support claims that H2O2 is a natural cosubstrate for LPMOs by demonstrating that when certain reductants are used, catalysis can be driven only by H2O2 and not by O2 Furthermore, we show how auto-inactivation resulting from endogenous generation of H2O2 in the LPMO-reductant system may be prevented. Finally, we identified a reductant that leads to enzyme activation without any endogenous H2O2 generation, allowing for improved control of LPMO reactivity and providing a valuable tool for future LPMO research.


Asunto(s)
Basidiomycota/metabolismo , Peróxido de Hidrógeno/metabolismo , Oxigenasas de Función Mixta/metabolismo , Polisacáridos/metabolismo , Basidiomycota/genética , Celulasa/metabolismo , Celulosa/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucanos/metabolismo , Concentración de Iones de Hidrógeno , Lignina/metabolismo , Oxigenasas de Función Mixta/genética , Oxidación-Reducción , Pichia/genética , Sustancias Reductoras , Madera , Xilanos/metabolismo
9.
Sci Rep ; 13(1): 5345, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-37005446

RESUMEN

Bacterial lytic polysaccharide monooxygenases (LPMOs) are known to oxidize the most abundant and recalcitrant polymers in Nature, namely cellulose and chitin. The genome of the model actinomycete Streptomyces coelicolor A3(2) encodes seven putative LPMOs, of which, upon phylogenetic analysis, four group with typical chitin-oxidizing LPMOs, two with typical cellulose-active LPMOs, and one which stands out by being part of a subclade of non-characterized enzymes. The latter enzyme, called ScLPMO10D, and most of the enzymes found in this subclade are unique, not only because of variation in the catalytic domain, but also as their C-terminus contains a cell wall sorting signal (CWSS), which flags the LPMO for covalent anchoring to the cell wall. Here, we have produced a truncated version of ScLPMO10D without the CWSS and determined its crystal structure, EPR spectrum, and various functional properties. While showing several structural and functional features typical for bacterial cellulose active LPMOs, ScLPMO10D is only active on chitin. Comparison with two known chitin-oxidizing LPMOs of different taxa revealed interesting functional differences related to copper reactivity. This study contributes to our understanding of the biological roles of LPMOs and provides a foundation for structural and functional comparison of phylogenetically distant LPMOs with similar substrate specificities.


Asunto(s)
Oxigenasas de Función Mixta , Streptomyces coelicolor , Oxigenasas de Función Mixta/metabolismo , Streptomyces coelicolor/metabolismo , Dominio Catalítico , Filogenia , Celulosa , Quitina/química , Polisacáridos Bacterianos , Pared Celular/metabolismo , Polisacáridos
10.
Sci Rep ; 13(1): 11586, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37463979

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) are taxonomically widespread copper-enzymes boosting biopolymers conversion (e.g. cellulose, chitin) in Nature. White-rot Polyporales, which are major fungal wood decayers, may possess up to 60 LPMO-encoding genes belonging to the auxiliary activities family 9 (AA9). Yet, the functional relevance of such multiplicity remains to be uncovered. Previous comparative transcriptomic studies of six Polyporales fungi grown on cellulosic substrates had shown the overexpression of numerous AA9-encoding genes, including some holding a C-terminal domain of unknown function ("X282"). Here, after carrying out structural predictions and phylogenetic analyses, we selected and characterized six AA9-X282s with different C-term modularities and atypical features hitherto unreported. Unexpectedly, after screening a large array of conditions, these AA9-X282s showed only weak binding properties to cellulose, and low to no cellulolytic oxidative activity. Strikingly, proteomic analysis revealed the presence of multiple phosphorylated residues at the surface of these AA9-X282s, including a conserved residue next to the copper site. Further analyses focusing on a 9 residues glycine-rich C-term extension suggested that it could hold phosphate-binding properties. Our results question the involvement of these AA9 proteins in the degradation of plant cell wall and open new avenues as to the divergence of function of some AA9 members.


Asunto(s)
Basidiomycota , Cobre , Filogenia , Cobre/metabolismo , Proteómica , Polisacáridos/metabolismo , Celulosa/metabolismo , Basidiomycota/metabolismo , Fosfatos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
11.
FEBS Lett ; 597(16): 2086-2102, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37418595

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) belonging to the AA14 family are believed to contribute to the enzymatic degradation of lignocellulosic biomass by specifically acting on xylan in recalcitrant cellulose-xylan complexes. Functional characterization of an AA14 LPMO from Trichoderma reesei, TrAA14A, and a re-evaluation of the properties of the previously described AA14 from Pycnoporus coccineus, PcoAA14A, showed that these proteins have oxidase and peroxidase activities that are common for LPMOs. However, we were not able to detect activity on cellulose-associated xylan or any other tested polysaccharide substrate, meaning that the substrate of these enzymes remains unknown. Next to raising questions regarding the true nature of AA14 LPMOs, the present data illustrate possible pitfalls in the functional characterization of these intriguing enzymes.


Asunto(s)
Oxigenasas de Función Mixta , Xilanos , Oxigenasas de Función Mixta/química , Xilanos/metabolismo , Polisacáridos/metabolismo , Celulosa/metabolismo , Oxidorreductasas
12.
Nat Commun ; 12(1): 2132, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33837197

RESUMEN

Oxidative plant cell-wall processing enzymes are of great importance in biology and biotechnology. Yet, our insight into the functional interplay amongst such oxidative enzymes remains limited. Here, a phylogenetic analysis of the auxiliary activity 7 family (AA7), currently harbouring oligosaccharide flavo-oxidases, reveals a striking abundance of AA7-genes in phytopathogenic fungi and Oomycetes. Expression of five fungal enzymes, including three from unexplored clades, expands the AA7-substrate range and unveils a cellooligosaccharide dehydrogenase activity, previously unknown within AA7. Sequence and structural analyses identify unique signatures distinguishing the strict dehydrogenase clade from canonical AA7 oxidases. The discovered dehydrogenase directly is able to transfer electrons to an AA9 lytic polysaccharide monooxygenase (LPMO) and fuel cellulose degradation by LPMOs without exogenous reductants. The expansion of redox-profiles and substrate range highlights the functional diversity within AA7 and sets the stage for harnessing AA7 dehydrogenases to fine-tune LPMO activity in biotechnological conversion of plant feedstocks.


Asunto(s)
Celulosa/metabolismo , Proteínas Fúngicas/metabolismo , Oomicetos/enzimología , Oxidorreductasas/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Cristalografía por Rayos X , ADN de Hongos/genética , ADN de Hongos/aislamiento & purificación , Flavoproteínas Transportadoras de Electrones/metabolismo , Pruebas de Enzimas , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Proteínas Fúngicas/ultraestructura , Microbiología Industrial/métodos , Espectroscopía de Resonancia Magnética , Oomicetos/genética , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/aislamiento & purificación , Oxidorreductasas/ultraestructura , Filogenia , Análisis de Secuencia de ADN , Especificidad por Sustrato
13.
Commun Biol ; 4(1): 871, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34267314

RESUMEN

Fungal biotechnology is set to play a keystone role in the emerging bioeconomy, notably to address pollution issues arising from human activities. Because they preserve biological diversity, Biological Resource Centres are considered as critical infrastructures to support the development of biotechnological solutions. Here, we report the first large-scale phenotyping of more than 1,000 fungal strains with evaluation of their growth and degradation potential towards five industrial, human-designed and recalcitrant compounds, including two synthetic dyes, two lignocellulose-derived compounds and a synthetic plastic polymer. We draw a functional map over the phylogenetic diversity of Basidiomycota and Ascomycota, to guide the selection of fungal taxa to be tested for dedicated biotechnological applications. We evidence a functional diversity at all taxonomic ranks, including between strains of a same species. Beyond demonstrating the tremendous potential of filamentous fungi, our results pave the avenue for further functional exploration to solve the ever-growing issue of ecosystems pollution.


Asunto(s)
Biotecnología/métodos , Colorantes/metabolismo , Hongos/metabolismo , Microbiología Industrial/métodos , Lignina/metabolismo , Plásticos/metabolismo , Ascomicetos/clasificación , Ascomicetos/genética , Ascomicetos/metabolismo , Basidiomycota/clasificación , Basidiomycota/genética , Basidiomycota/metabolismo , Hongos/clasificación , Hongos/genética , Variación Genética , Geografía , Humanos , Fenotipo , Filogenia , Especificidad de la Especie
14.
Nat Commun ; 11(1): 5786, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33188177

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) are widely distributed in Nature, where they catalyze the hydroxylation of glycosidic bonds in polysaccharides. Despite the importance of LPMOs in the global carbon cycle and in industrial biomass conversion, the catalytic properties of these monocopper enzymes remain enigmatic. Strikingly, there is a remarkable lack of kinetic data, likely due to a multitude of experimental challenges related to the insoluble nature of LPMO substrates, like cellulose and chitin, and to the occurrence of multiple side reactions. Here, we employed competition between well characterized reference enzymes and LPMOs for the H2O2 co-substrate to kinetically characterize LPMO-catalyzed cellulose oxidation. LPMOs of both bacterial and fungal origin showed high peroxygenase efficiencies, with kcat/KmH2O2 values in the order of 105-106 M-1 s-1. Besides providing crucial insight into the cellulolytic peroxygenase reaction, these results show that LPMOs belonging to multiple families and active on multiple substrates are true peroxygenases.


Asunto(s)
Celulosa/metabolismo , Oxigenasas de Función Mixta/metabolismo , Bacterias/enzimología , Catalasa/metabolismo , Quitina/metabolismo , Hongos/enzimología , Peroxidasa de Rábano Silvestre/metabolismo , Peróxido de Hidrógeno/metabolismo , Cinética , Nanopartículas/química , Especificidad por Sustrato
15.
Nat Commun ; 11(1): 890, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-32060276

RESUMEN

Lytic polysaccharide (mono)oxygenases (LPMOs) perform oxidative cleavage of polysaccharides, and are key enzymes in biomass processing and the global carbon cycle. It has been shown that LPMO reactions may be driven by light, using photosynthetic pigments or photocatalysts, but the mechanism behind this highly attractive catalytic route remains unknown. Here, prompted by the discovery that LPMOs catalyze a peroxygenase reaction more efficiently than a monooxygenase reaction, we revisit these light-driven systems, using an LPMO from Streptomyces coelicolor (ScAA10C) as model cellulolytic enzyme. By using coupled enzymatic assays, we show that H2O2 is produced and necessary for efficient light-driven activity of ScAA10C. Importantly, this activity is achieved without addition of reducing agents and proportional to the light intensity. Overall, the results highlight the importance of controlling fluxes of reactive oxygen species in LPMO reactions and demonstrate the feasibility of light-driven, tunable enzymatic peroxygenation to degrade recalcitrant polysaccharides.


Asunto(s)
Celulosa/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Oxigenasas/química , Oxigenasas/metabolismo , Streptomyces coelicolor/enzimología , Biocatálisis , Celulosa/química , Estabilidad de Enzimas , Proteínas Fúngicas/genética , Peróxido de Hidrógeno/metabolismo , Cinética , Luz , Oxigenasas/genética , Polimerizacion/efectos de la radiación , Streptomyces coelicolor/química , Streptomyces coelicolor/genética , Streptomyces coelicolor/efectos de la radiación
16.
FEBS J ; 287(5): 897-908, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31532909

RESUMEN

The catalytic function of lytic polysaccharide monooxygenases (LPMOs) to cleave and decrystallize recalcitrant polysaccharides put these enzymes in the spotlight of fundamental and applied research. Here we demonstrate that the demand of LPMO for an electron donor and an oxygen species as cosubstrate can be fulfilled by a single auxiliary enzyme: an engineered fungal cellobiose dehydrogenase (CDH) with increased oxidase activity. The engineered CDH was about 30 times more efficient in driving the LPMO reaction due to its 27 time increased production of H2 O2 acting as a cosubstrate for LPMO. Transient kinetic measurements confirmed that intra- and intermolecular electron transfer rates of the engineered CDH were similar to the wild-type CDH, meaning that the mutations had not compromised CDH's role as an electron donor. These results support the notion of H2 O2 -driven LPMO activity and shed new light on the role of CDH in activating LPMOs. Importantly, the results also demonstrate that the use of the engineered CDH results in fast and steady LPMO reactions with CDH-generated H2 O2 as a cosubstrate, which may provide new opportunities to employ LPMOs in biomass hydrolysis to generate fuels and chemicals.


Asunto(s)
Deshidrogenasas de Carbohidratos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Polisacáridos/metabolismo , Celulosa/metabolismo , Peróxido de Hidrógeno/metabolismo
17.
Microbiol Mol Biol Rev ; 82(4)2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30257993

RESUMEN

Biomass constitutes an appealing alternative to fossil resources for the production of materials and energy. The abundance and attractiveness of vegetal biomass come along with challenges pertaining to the intricacy of its structure, evolved during billions of years to face and resist abiotic and biotic attacks. To achieve the daunting goal of plant cell wall decomposition, microorganisms have developed many (enzymatic) strategies, from which we seek inspiration to develop biotechnological processes. A major breakthrough in the field has been the discovery of enzymes today known as lytic polysaccharide monooxygenases (LPMOs), which, by catalyzing the oxidative cleavage of recalcitrant polysaccharides, allow canonical hydrolytic enzymes to depolymerize the biomass more efficiently. Very recently, it has been shown that LPMOs are not classical monooxygenases in that they can also use hydrogen peroxide (H2O2) as an oxidant. This discovery calls for a revision of our understanding of how lignocellulolytic enzymes are connected since H2O2 is produced and used by several of them. The first part of this review is dedicated to the LPMO paradigm, describing knowns, unknowns, and uncertainties. We then present different lignocellulolytic redox systems, enzymatic or not, that depend on fluxes of reactive oxygen species (ROS). Based on an assessment of these putatively interconnected systems, we suggest that fine-tuning of H2O2 levels and proximity between sites of H2O2 production and consumption are important for fungal biomass conversion. In the last part of this review, we discuss how our evolving understanding of redox processes involved in biomass depolymerization may translate into industrial applications.


Asunto(s)
Biotecnología , Hongos/enzimología , Lignina/metabolismo , Oxidorreductasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Hidrólisis , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , Oxidación-Reducción , Plantas/química , Polisacáridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA