Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Macromol Rapid Commun ; 40(6): e1800533, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30576035

RESUMEN

Here, the combinatorial synthesis of molecule arrays via a laser-assisted process is reported. Laser-transferred polymer nanolayers with embedded monomers, activators, or bases can be reliably stacked on top of each other, spot-by-spot, to synthesize molecule arrays. These various chemicals in the nanometer-thin layers are mixed by heat or solvent vapor, inducing coupling reactions. As an example, peptoid arrays with a density of 10 000 spots per cm2 with the sub-monomer or monomer method are generated. Moreover, successful reactions spot-by-spot are verified by laser-transferring MALDI-matrix (Matrix-assisted laser desorption/ionization) followed by MALDI mass spectrometry imaging.


Asunto(s)
Rayos Láser , Nanoestructuras/química , Peptoides/síntesis química , Polímeros/síntesis química , Análisis por Matrices de Proteínas , Estructura Molecular , Peptoides/química , Polímeros/química
2.
Adv Mater ; 31(26): e1806656, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31033052

RESUMEN

Chemical synthesis is performed by reacting different chemical building blocks with defined stoichiometry, while meeting additional conditions, such as temperature and reaction time. Such a procedure is especially suited for automation and miniaturization. Life sciences lead the way to synthesizing millions of different oligonucleotides in extremely miniaturized reaction sites, e.g., pinpointing active genes in whole genomes, while chemistry advances different types of automation. Recent progress in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging could match miniaturized chemical synthesis with a powerful analytical tool to validate the outcome of many different synthesis pathways beyond applications in the life sciences. Thereby, due to the radical miniaturization of chemical synthesis, thousands of molecules can be synthesized. This in turn should allow ambitious research, e.g., finding novel synthesis routes or directly screening for photocatalysts. Herein, different technologies are discussed that might be involved in this endeavor. A special emphasis is given to the obstacles that need to be tackled when depositing tiny amounts of materials to many different extremely miniaturized reaction sites.


Asunto(s)
Materiales Biocompatibles/síntesis química , Miniaturización/métodos , Inteligencia Artificial , Automatización , ADN/síntesis química , Microfluídica , Compuestos Orgánicos/síntesis química , Péptidos/síntesis química , Polisacáridos/síntesis química , Impresión Tridimensional , Proteínas/síntesis química , Bibliotecas de Moléculas Pequeñas/síntesis química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
3.
Rev Sci Instrum ; 79(3): 035106, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18377044

RESUMEN

We examined the high precision deposition of toner and polymer microparticles with a typical size of approximately 10 microm on electrode arrays with electrodes of 100 microm and below using custom-made microelectronic chips. Selective desorption of redundant particles was employed to obtain a given particle pattern from preadsorbed particle layers. Microparticle desorption was regulated by dielectrophoretic attracting forces generated by individual pixel electrodes, tangential detaching forces of an air flow, and adhesion forces on the microchip surface. A theoretical consideration of the acting forces showed that without pixel voltage, the tangential force applied for particle detachment exceeded the particle adhesion force. When the pixel voltage was switched on, however, the sum of attracting forces was larger than the tangential detaching force, which was crucial for desorption efficiency. In our experiments, appropriately large dielectrophoretic forces were achieved by applying high voltages of up to 100 V on the pixel electrodes. In addition, electrode geometries on the chip's surface as well as particle size influenced the desorption quality. We further demonstrated the compatibility of this procedure to complementary metal oxide semiconductor chip technology, which should allow for an easy technical implementation with respect to high-resolution microparticle deposition.


Asunto(s)
Procedimientos Analíticos en Microchip/métodos , Microelectrodos , Polímeros , Electricidad , Tamaño de la Partícula , Semiconductores , Propiedades de Superficie
4.
Adv Mater ; 30(31): e1801632, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29938845

RESUMEN

Surface-bound microarrays of multiple oligo- and macromolecules (e.g., peptides, DNA) offer versatile options in biomedical applications like drug screening, DNA analysis, or medical diagnostics. Combinatorial syntheses of these molecules in situ can save significant resources in regard to processing time and material use. Furthermore, high feature densities are needed to enable high-throughput and low sample volumes as generally regarded in combinatorial chemistry. Here, a scanning-probe-lithography-based approach for the combinatorial in situ synthesis of macromolecules is presented in microarray format. Feature sizes below 40 µm allow for the creation of high-density arrays with feature densities of 62 500 features per cm2 . To demonstrate feasibility of this approach for biomedical applications, a multiplexed array of functional protein tags (HA- and FLAG-tag) is synthesized, and selective binding of respective epitope recognizing antibodies is shown. This approach uses only small amounts of base chemicals for synthesis and can be further parallelized, therefore, opening up a route to flexible, highly dense, and cost-effective microarrays.


Asunto(s)
Péptidos/química , Análisis por Matrices de Proteínas/métodos , Anticuerpos/inmunología , Epítopos/inmunología , Hemaglutininas Virales/química , Hemaglutininas Virales/inmunología , Microfluídica , Microscopía Fluorescente , Péptidos/síntesis química , Polímeros/química , Análisis por Matrices de Proteínas/instrumentación
5.
Biomaterials ; 27(18): 3505-14, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16499964

RESUMEN

Glass slides have been modified with a multifunctional poly(ethylene glycol) (PEG)-based polymer with respect to array applications in the growing field of proteome research. We systematically investigated the stepwise synthesis of the PEG films starting from self-assembled alkyl silane monolayers via monolayer peroxidation and subsequent graft polymerization of PEG methacrylate (PEGMA). Chemical composition was examined by X-ray photoelectron spectroscopy (XPS); infrared spectroscopy provided information about order and composition of the films as well; film thickness was determined by ellipsometry; using fluorescence microscopy and again XPS, the amount of proteins adsorbed on the slides was investigated. The novel support material allows a versatile modification of the amino group surface density up to 40 nmol/cm(2) for the linkage of probe molecules. Further on, we carried out standard peptide synthesis based on the well-established 9-fluorenylmethoxycarbonyl (Fmoc) chemistry, which was monitored by UV/Vis quantification of the Fmoc deblocking and mass spectrometry. The polymer coating is stable with respect to a wide range of chemical and thermal conditions, and prevents the glass surface from unspecific protein adsorption. Finally, we applied our modified glass slides in immunoassays and thus examined specific interactions of monoclonal antibodies with appropriate peptide epitopes.


Asunto(s)
Vidrio/química , Inmunoensayo/instrumentación , Péptidos/química , Polietilenglicoles/química , Análisis por Matrices de Proteínas/instrumentación , Secuencia de Aminoácidos , Epítopos/química , Epítopos/inmunología , Datos de Secuencia Molecular , Péptidos/síntesis química , Péptidos/inmunología , Proteínas/química , Sensibilidad y Especificidad , Silanos/química , Propiedades de Superficie
6.
Nat Commun ; 7: 11844, 2016 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-27296868

RESUMEN

Laser writing is used to structure surfaces in many different ways in materials and life sciences. However, combinatorial patterning applications are still limited. Here we present a method for cost-efficient combinatorial synthesis of very-high-density peptide arrays with natural and synthetic monomers. A laser automatically transfers nanometre-thin solid material spots from different donor slides to an acceptor. Each donor bears a thin polymer film, embedding one type of monomer. Coupling occurs in a separate heating step, where the matrix becomes viscous and building blocks diffuse and couple to the acceptor surface. Furthermore, we can consecutively deposit two material layers of activation reagents and amino acids. Subsequent heat-induced mixing facilitates an in situ activation and coupling of the monomers. This allows us to incorporate building blocks with click chemistry compatibility or a large variety of commercially available non-activated, for example, posttranslationally modified building blocks into the array's peptides with >17,000 spots per cm(2).


Asunto(s)
Técnicas Químicas Combinatorias , Oligopéptidos/síntesis química , Técnicas de Síntesis en Fase Sólida/métodos , Carbodiimidas/química , Fluorenos/química , Hemaglutininas/química , Éteres de Hidroxibenzoatos/química , Rayos Láser , Metacrilatos/química , Oligopéptidos/química , Polietilenglicoles/química
7.
Methods Mol Biol ; 669: 109-24, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20857361

RESUMEN

Today, lithographic methods enable combinatorial synthesis of >50,000 oligonucleotides per cm(2), an advance that has revolutionized the whole field of genomics. A similar development is expected for the field of proteomics, provided that affordable, very high-density peptide arrays are available. However, peptide arrays lag behind oligonucleotide arrays. This is mainly due to the monomer-by-monomer repeated consecutive coupling of 20 different amino acids associated with lithography, which adds up to an excessive number of coupling cycles. A combinatorial synthesis based on electrically charged solid amino acid particles resolves this problem. A computer chip consecutively addresses the different charged particles to a solid support, where, when completed, the whole layer of solid amino acid particles is melted at once. This frees hitherto immobilized amino acids to couple all 20 different amino acids in one single coupling reaction to the support. The method should allow for the translation of entire genomes into a set of overlapping peptides to be used in proteome research.


Asunto(s)
Péptidos/metabolismo , Análisis por Matrices de Proteínas/métodos , Aminoácidos/química , Animales , Bovinos , Técnicas Químicas Combinatorias , Electrodos , Tamaño de la Partícula , Péptidos/síntesis química , Péptidos/química , Polietilenglicoles/química , Coloración y Etiquetado , Propiedades de Superficie
8.
Methods Mol Biol ; 570: 309-16, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19649602

RESUMEN

Combinatorial synthesis of peptides on solid supports (1), either as spots on cellulose membranes (2) or with split-pool-libraries on polymer beads (3), substantially forwarded research in the field of peptide-protein interactions. Admittedly, these concepts have specific limitations, on one hand the number of synthesizable peptide sequences per area, on the other hand elaborate decoding/encoding strategies, false-positive results and sequence limitations. We recently established a method to produce high-density peptide arrays on microelectronic chips (4). Solid amino acid microparticles were charged by friction and transferred to defined pixel electrodes onto the chip's surface, where they couple to a functional polymer coating simply upon melting (Fig. 16.1 A-D,F). By applying standard Fmoc chemistry according to Merrifield, peptide array densities of up to 40,000 spots per square centimetre were achieved (Fig. 16.1G). The term "Merrifield synthesis" describes the consecutive linear coupling and deprotecting of L-amino acids modified with base-labile fluorenylmethoxy (Fmoc) groups at the N-terminus and different acid-sensitive protecting groups at their side chains. Removing side chain protecting groups takes place only once at the very end of each synthesis and generates the natural peptide sequence thereby.


Asunto(s)
Técnicas Químicas Combinatorias/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Análisis por Matrices de Proteínas/métodos , Animales , Proteínas Sanguíneas/farmacología , Técnicas Químicas Combinatorias/instrumentación , Ensayos Analíticos de Alto Rendimiento/instrumentación , Humanos , Metacrilatos/farmacología , Modelos Biológicos , Biblioteca de Péptidos , Polietilenglicoles/farmacología , Análisis por Matrices de Proteínas/instrumentación , Coloración y Etiquetado/métodos , Propiedades de Superficie
9.
Curr Protoc Protein Sci ; Chapter 18: 18.2.1-18.2.13, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19688736

RESUMEN

Microchips are used in the combinatorial synthesis of peptide arrays by means of amino acid microparticle deposition. The surface of custom-built microchips can be equipped with an amino-modified poly(ethylene glycol)methacrylate (PEGMA) graft polymer coating, which permits high loading of functional groups and resists nonspecific protein adsorption. Specific microparticles that are addressed to the polymer-coated microchip surface in a well defined pattern release preactivated amino acids upon melting, and thus allow combinatorial synthesis of high-complexity peptide arrays directly on the chip surface. Currently, arrays with densities of up to 40,000 peptide spots/cm(2) can be generated in this way, with a minimum of coupling cycles required for full combinatorial synthesis. Without using any additional blocking agent, specific peptide recognition has been verified by background-free immunostaining on the chip-based array. This unit describes microchip surface modification, combinatorial peptide array synthesis on the chip, and a typical immunoassay employing the resulting high-density peptide arrays.


Asunto(s)
Técnicas Químicas Combinatorias , Péptidos/síntesis química , Análisis por Matrices de Proteínas/instrumentación , Adsorción , Aminoácidos/química , Materiales Biocompatibles Revestidos/química , Metacrilatos/química , Tamaño de la Partícula , Péptidos/química , Polietilenglicoles/química , Polímeros/química , Análisis por Matrices de Proteínas/métodos , Proteínas/química , Propiedades de Superficie
10.
Langmuir ; 24(15): 8151-7, 2008 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-18605707

RESUMEN

We synthesized various graft copolymer films of poly(ethylene glycol) methacrylate (PEGMA) and methyl methacrylate (MMA) on silicon to examine the dependency of protein-surface interactions on grafting composition. We optimized atom transfer radical polymerizations to achieve film thicknesses from 25 to 100 nm depending on the monomer mole fractions, and analyzed the resulting surfaces by X-ray photoelectron spectroscopy (XPS), ellipsometry, contact angle measurements, and atomic force microscopy (AFM). As determined by XPS, the stoichiometric ratios of copolymer graftings correlated with the concentrations of provided monomer solutions. However, we found an unexpected and pronounced hydrophobic domain on copolymer films with a molar amount of 10-40% PEGMA, as indicated by advancing contact angles of up to 90 degrees . Nevertheless, a breakdown of the protein-repelling character was only observed for a fraction of 15% PEGMA and lower, far in the hydrophobic domain. Investigation of the structural basis of this exceptional wettability by high-resolution AFM demonstrated the independence of this property from morphological features.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Metacrilatos/química , Metilmetacrilatos/química , Polietilenglicoles/química , Proteínas/química , Microscopía de Fuerza Atómica , Estructura Molecular , Propiedades de Superficie
11.
J Proteome Res ; 6(8): 3197-202, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17628092

RESUMEN

Complementary metal oxide semiconductor (CMOS) microelectronic chips fulfill important functions in the field of biomedical research, ranging from the generation of high complexity DNA and protein arrays to the detection of specific interactions thereupon. Nevertheless, the issue of merging pure CMOS technology with a chemically stable surface modification which further resists interfering nonspecific protein adsorption has not been addressed yet. We present a novel surface coating for CMOS microchips based on poly(ethylene glycol)methacrylate graft polymer films, which in addition provides high loadings of functional groups for the linkage of probe molecules. The coated microchips were compatible with the harshest conditions emerging in microarray generating methods, thoroughly retaining structural integrity and microelectronic functionality. Nonspecific adsorption of proteins on the chip's surface was completely obviated even with complex serum protein mixtures. We could demonstrate the background-free antibody staining of immobilized probe molecules without using any blocking agents, encouraging further integration of CMOS technology in proteome research.


Asunto(s)
Polímeros/química , Análisis por Matrices de Proteínas/métodos , Semiconductores , Adsorción , Análisis por Matrices de Proteínas/instrumentación , Proteínas/análisis , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA