Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Food Chem ; 369: 130934, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34488131

RESUMEN

The egg yolk immunoglobulin (IgY) loaded chitosan-liposomes (IgY-CS-LP) were prepared and assisted by supercritical carbon dioxide (SCCO2). The effects of phospholipid type and SCCO2 pressure on particle size, zeta potential, encapsulation efficiency, structural properties and stabilities were investigated. The results showed that the liposomes prepared by egg yolk phosphatidylcholine (EPC) had better homogeneity and higher encapsulation rate than those by soybean phosphatidylcholine (SPC). With the increase in critical pressure, the particle size decreased dramatically and became more uniform. Under pressure of 20 MPa, it showed a preferable stability on IgY-CS-LP and superior encapsulation efficiency of IgY (76.85%). Besides, IgY could be wrapped in the phospholipid layer which has strong interaction with chitosan. The results suggested that chitosan liposome complex could form an effective carrier for IgY with method of SCCO2, which can solve the problem of IgY inactivation in vivo, so as to enhance human immunity and other effects.


Asunto(s)
Quitosano , Yema de Huevo , Animales , Dióxido de Carbono , Pollos , Humanos , Inmunoglobulinas , Liposomas
2.
J Food Sci ; 87(4): 1708-1720, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35279842

RESUMEN

The degradation of acidic gastric juice on immunoglobulin Y (IgY) leads to destruction on the structural and loss of the bioactivity, limiting the bioavailability of oral IgY and its research or application in adjuvant treatment of diseases. In this work, it was surmounted with IgY-loaded chitosan-liposomes prepared by supercritical carbon dioxide-assisted method. A range of chitosan concentrations (0%, 0.5%, 0.8%, 1.1%, and 1.4%) were selected to explore the influence of chitosan concentration on the encapsulation effectiveness, stability, and in vitro-simulated digestive release properties of liposome-encapsulated IgY. The results displayed that owing to the robust interaction between chitosan and liposomes, the particle size, encapsulation efficiency, and stability of liposomes reached the optimal state at a chitosan concentration of 0.8%, with the encapsulation efficiency reaching 77.51%. Moreover, the liposomes could be stored at 4°C for 9 days without obvious sedimentation. The zeta potential of liposomes containing 0.8% chitosan was higher than that of samples without chitosan at high salt concentration treatment. In vitro release experiments demonstrated that liposomes fitted well in the Peppas equation. Chitosan-coated liposomes were capable of delaying the release of IgY in the stomach during simulated digestion, allowing more IgY to be released in the intestine. To sum up, Chitosan played a vital role in maintaining the stability and encapsulation of IgY, and the results of this work provide a theoretical basis for the development and utilization of chitosan and the protection of activity of IgY when administered orally. PRACTICAL APPLICATION: IgY serves as a bioactive substance with anti-inflammatory, antibacterial, and antioxidant functions. However, it is far from satisfactory for the oral delivery activity of IgY. Encapsulation of liposomes contributed to alleviate the release of IgY in the stomach. However, liposomes were less stable and not efficient enough to encapsulate IgY. This study demonstrated that the addition of 0.8% chitosan could effectively enhance the encapsulation efficiency of liposomes and improved the stability of liposomes. It might contribute to the solution of the oral delivery activity of IgY and provide a promising idea for the utilization of chitosan.


Asunto(s)
Quitosano , Quitosano/química , Digestión , Inmunoglobulinas/metabolismo , Liposomas/química , Tamaño de la Partícula
3.
Int J Biol Macromol ; 193(Pt B): 1078-1085, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34800518

RESUMEN

The antigen binding fragment (Fab) is pepsin-digested product from egg yolk immunoglobulin (IgY), which shows lower immunogenicity and higher antibacterial activity. However, it limited the application of Fab due to the spontaneous adsorption and aggregation at the air-liquid interface. The present work is to investigate the effect of surfactants polysorbate 20 (PS20), poloxamer 188 (P188), and polyethylene glycol (PEG) on the aggregation stability of Fab of IgY. The results confirmed the positive role of surfactants in improving Fab stability. PS20 could effectively prevent the generation of Fab aggregates (DLS and light-obscuration analysis). It could also distinctly increase the internal hydrophobicity level, fortify the surface charge by altering the molecular conformational characteristics of Fab. The results of CLSM and surface tension demonstrated that P188 and PEG were co-adsorbed with Fab at the air-liquid interface and inhibited the formation of aggregation. PS20 competitively adsorbed in the gap between Fab molecules to inhibit the formation of aggregates. These findings would give an in-depth understanding of protein aggregation behavior influenced by surfactants and provide a theoretical basis for the development of functional food based on Fab active fragments.


Asunto(s)
Yema de Huevo/química , Fragmentos Fab de Inmunoglobulinas/química , Inmunoglobulinas/química , Poloxámero/química , Polietilenglicoles/química , Polisorbatos/química , Tensoactivos/química , Animales , Pollos
4.
Food Chem ; 355: 129635, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33780798

RESUMEN

In this study, we evaluated potential usage of acylated ovalbumin (AOVA) nanogels fabricated via acylation modification and heat-induced self-assembly process as novel delivery systems for curcumin. Compared to native ovalbumin (NOVA) nanogels without chemical acylation, the obtained AOVA nanogels have shown smaller average hydrodynamic diameter (155.73 nm), relatively uniform size distribution (polydispersity index around 0.28), enhanced negative surface charge (-24.3 mV), and an improved stability under the conditions of high ionic strength, different pH and storage time. Moreover, AOVA nanogels exhibited a remarkable conformational change in secondary and tertiary structures, improved surface hydrophobicity, and increased free sulfhydryl content compared with NOVA nanogels. Moreover, curcumin encapsulated in AOVA nanogels displayed higher encapsulation efficiency (93.64%) and slower sustained release under simulated gastrointestinal conditions as compared with NOVA nanogels. Hence, we have suggested that AOVA nanogels successfully fabricated with improved physicochemical properties as a novel ideal carrier for hydrophobic active compounds.


Asunto(s)
Curcumina/química , Portadores de Fármacos/química , Nanogeles/química , Ovalbúmina/química , Acilación , Estabilidad de Medicamentos , Calor , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA