Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Peripher Nerv Syst ; 29(2): 232-242, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705839

RESUMEN

BACKGROUND AND AIMS: Mutations in ganglioside-induced differentiation-associated protein 1 (GDAP1) cause axonal or demyelinating Charcot-Marie-Tooth disease (CMT) with autosomal dominant or recessive inheritance. In this study, we aim to report the genotypic and phenotypic features of GDAP1-related CMT in a Chinese cohort. METHODS: Clinical, neurophysiological, genetic data, and available muscle/brain imaging information of 28 CMT patients with GDAP1 variants were retrospectively collected. RESULTS: We identified 16 GDAP1 pathogenic variants, among which two novel variants c.980dup(p.L328FfsX25) and c.480+4T>G were first reported. Most patients (16/28) presented with AR or AD CMT2K phenotype. Clinical characteristics in our cohort demonstrated that the AR patients presented earlier onset, more severe phenotype compared with the AD patients. Considerable intra-familial phenotypic variability was observed among three AD families. Muscle atrophy and fatty infiltration in the lower extremity were detected by Muscle magnetic resonance imaging (MRI) scans in four patients. MRI showed two AR patients showed more severe muscle involvement of the posterior compartment than those of the anterolateral compartment in the calf. One patient carrying Q38*/H256R variants accompanied with mild periventricular leukoaraiosis. CONCLUSIONS: In this study, we conducted an analysis of clinical features of the GDAP1-related CMT patients, expanded the mutation spectrum in GDAP1 by reporting two novel variants, and presented the prevalent occurrence of the H256R mutation in China. The screening of GDAP1 should be particularly emphasized in Chinese patients with CMT2, given the incomplete penetrance and pathogenic inheritance patterns involving dominant and recessive modes.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Mutación , Proteínas del Tejido Nervioso , Humanos , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Enfermedad de Charcot-Marie-Tooth/diagnóstico por imagen , Masculino , Femenino , Adulto , Adolescente , Adulto Joven , Niño , Proteínas del Tejido Nervioso/genética , Persona de Mediana Edad , Pueblo Asiatico/genética , China , Estudios Retrospectivos , Linaje , Preescolar , Fenotipo , Pueblos del Este de Asia
2.
J Peripher Nerv Syst ; 28(4): 608-613, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37584201

RESUMEN

BACKGROUND AND AIMS: Biallelic variants in the sorbitol dehydrogenase (SORD) gene have been identified as the genetic cause of autosomal recessive (AR) peripheral neuropathy (PN) manifesting as Charcot-Marie-Tooth disease type 2 (CMT2) or distal hereditary motor neuropathy (dHMN). We aim to observe the genetic and clinical spectrum of a cohort of patients with SORD-related PN (SORD-PN). METHODS: A total of 107 patients with AR or sporadic CMT2/dHMN underwent molecular diagnosis by whole-exome sequencing and subsequent Sanger sequencing validation. Available phenotypic data for SORD-PN were collected and analyzed. RESULTS: Eleven (10.28%) of 107 patients were identified as SORD-PN, including four with CMT2 and seven with dHMN. The SORD variant c.210 T > G;p.His70Gln in F-d3 was firstly reported and subsequent analysis showed that it resulted in loss of SORD enzyme function. Evidence of subclinical muscle involvement was frequently detected in patients with SORD-PN, including mildly to moderately elevated serum creatine kinase (CK) levels in 10 patients, myogenic electrophysiological changes in one patient, and muscle edema in five patients undergoing lower extremity MRI. Fasting serum sorbitol level was 88-fold higher in SORD-PN patients (9.69 ± 1.07 mg/L) than in healthy heterozygous subjects (0.11 ± 0.01 mg/L) and 138-fold higher than in healthy controls (0.07 ± 0.02 mg/L). INTERPRETATION: The novel SORD variant c.210 T > G;p.His70Gln and evidence of subclinical muscle involvement were identified, which expanded the genetic and clinical spectrum of SORD-PN. Subclinical muscle involvement might be a common but easily overlooked clinical feature. The serum CK and fasting serum sorbitol levels were expected to be sensitive biomarkers confirmed by follow-up cohort study.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Neuropatía Hereditaria Motora y Sensorial , Humanos , L-Iditol 2-Deshidrogenasa/genética , Estudios de Seguimiento , Enfermedad de Charcot-Marie-Tooth/genética , Músculos , Sorbitol , Mutación/genética , Linaje , Neuropatía Hereditaria Motora y Sensorial/genética
3.
J Peripher Nerv Syst ; 28(4): 629-641, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37749855

RESUMEN

BACKGROUND AND AIMS: Neuronal intranuclear inclusion disease (NIID) is a rare progressive neurodegenerative disorder mainly caused by abnormally expanded GGC repeats within the NOTCH2NLC gene. Most patients with NIID show polyneuropathy. Here, we aim to investigate diagnostic electrophysiological markers of NIID. METHODS: In this retrospective dual-center study, we reviewed 96 patients with NOTCH2NLC-related NIID, 94 patients with genetically confirmed Charcot-Marie-Tooth (CMT) disease, and 62 control participants without history of peripheral neuropathy, who underwent nerve conduction studies between 2018 and 2022. RESULTS: Peripheral nerve symptoms were presented by 53.1% of patients with NIID, whereas 97.9% of them showed peripheral neuropathy according to electrophysiological examinations. Patients with NIID were characterized by slight demyelinating sensorimotor polyneuropathy; some patients also showed mild axonal lesions. Motor nerve conduction velocity (MCV) of the median nerve usually exceeded 35 m/s, and were found to be negatively correlated with the GGC repeat sizes. Regarding the electrophysiological differences between muscle weakness type (n = 27) and non-muscle weakness type (n = 69) of NIID, nerve conduction abnormalities were more severe in the muscle weakness type involving both demyelination and axonal impairment. Notably, specific DWI subcortical lace sign was presented in only 33.3% of muscle weakness type, thus it was difficult to differentiate them from CMT. Combining age of onset, distal motor latency, and compound muscle action potential of the median nerve showed the optimal diagnostic performance to distinguish NIID from major CMT (AUC = 0.989, sensitivity = 92.6%, specificity = 97.4%). INTERPRETATION: Peripheral polyneuropathy is common in NIID. Our study suggest that nerve conduction study is useful to discriminate NIID.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Enfermedades Neurodegenerativas , Humanos , Estudios de Conducción Nerviosa , Estudios Retrospectivos , Enfermedades Neurodegenerativas/diagnóstico , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Debilidad Muscular
4.
Eur J Neurol ; 28(11): 3774-3783, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34255403

RESUMEN

BACKGROUND AND PURPOSE: The purpose was to provide an overview of genotype and phenotype distribution in a cohort of patients with Charcot-Marie-Tooth disease (CMT) and related disorders from central south China. METHODS: In all, 435 patients were enrolled and detailed clinical data were collected. Multiplex ligation-dependent probe amplification for PMP22 duplication/deletion and CMT multi-gene panel sequencing were performed. Whole exome sequencing was further applied in the remaining patients who failed to achieve molecular diagnosis. RESULTS: Among the 435 patients, 216 had CMT1, 14 had hereditary neuropathy with pressure palsies (HNPP), 178 had CMT2, 24 had distal hereditary motor neuropathy (dHMN) and three had hereditary sensory and autonomic neuropathy (HSAN). The overall molecular diagnosis rate was 70%: 75.7% in CMT1, 100% in HNPP, 64.6% in CMT2, 41.7% in dHMN and 33.3% in HSAN. The most common four genotypes accounted for 68.9% of molecular diagnosed patients. Relatively frequent causes were missense changes in PMP22 (4.6%) and SH3TC2 (2.3%) in CMT1; and GDAP1 (5.1%), IGHMBP2 (4.5%) and MORC2 (3.9%) in CMT2. Twenty of 160 detected pathogenic variants and the associated phenotypes have not been previously reported. Broad phenotype spectra were observed in six genes, amongst which the pathogenic variants in BAG3 and SPTLC1 were detected in two sporadic patients presenting with the CMT2 phenotype. CONCLUSIONS: Our results provided a unique genotypic and phenotypic landscape of patients with CMT and related disorders from central south China, including a relatively high proportion of CMT2 and lower occurrence of PMP22 duplication. The broad phenotype spectra in certain genes have advanced our understanding of CMT.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis , Enfermedad de Charcot-Marie-Tooth/epidemiología , Enfermedad de Charcot-Marie-Tooth/genética , China/epidemiología , Proteínas de Unión al ADN , Genotipo , Humanos , Fenotipo , Factores de Transcripción
5.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 37(5): 578-583, 2020 May 10.
Artículo en Zh | MEDLINE | ID: mdl-32335891

RESUMEN

Charcot-Marie-Tooth disease (CMT) is the commonest form of inherited neuropathy and has an incidence of 1/2500. CMT1A is the commonest subtype of CMT, which is caused by duplication of peripheral myelin protein 22 (PMP22) gene and accounts for approximately 50% of CMT diagnosed by genetic testing. Duplication of PMP22 may influence the production of PMP22 mRNA and protein, and interfere with the proliferation, differentiation and apoptosis of Schwann cells. In addition, deregulation of NRG1/ErbB pathway and lipid metabolism can also lead to dysfunction of Schwann cells. Such factors may disturb the myelination process, leading to axon degeneration, muscle weakness, and atrophy subsequently. Accordingly, drug therapies for CMT1A are developed by targeting such factors. PXT3003, antisense oligonucleotides (ASOs) and small interfering RNA (siRNA) are supposed to down-regulate the level of PMP22 mRNA, while recombinant human NRG-1 (rhNRG1) and neurotrophin-3 (NT-3) may enhance Schwann cells survival and differentiation. In addition, lipid-supplemented diet may remedy the defect of lipid metabolism and maintain the proper structure of myelin. Other targeting drugs include ascorbic acid, progesterone antagonists, IFB-088, ADX71441, and ACE-083. This review is to sum up the pathogenesis of CMT1A and promising targeting drug therapies for further research.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Diferenciación Celular , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Enfermedad de Charcot-Marie-Tooth/terapia , Pruebas Genéticas , Humanos , Células de Schwann/citología
6.
Front Neurol ; 12: 736704, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35153971

RESUMEN

BACKGROUND AND AIMS: Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous group of inherited peripheral neuropathies. The wide phenotypic variability may not be completely explained by a single mutation. AIMS AND METHODS: To explore the existence of concomitant variants in CMT, we enrolled 189 patients and performed molecular diagnosis by application of next-generation sequencing combined with multiplex ligation-dependent probe amplification. We conducted a retrospective analysis of patients harboring coinherited variants in different genes. RESULTS: Four families were confirmed to possess variants in two genes, accounting for 2.1% (4/189) of the total in our cohort. One CMT1 patient with PMP22 duplication and MPZ variant (c.286A>C, p.K96Q) exhibited moderate neuropathy with infantile onset, while her father possessing MPZ variant was mildly affected with adolescence onset. A CMT2 patient with heterozygous variants in MFN2 (c.613_622delGTCACCACAG, p.V205Sfs*26) and GDAP1 (c.713G>T, p.W238L) exhibited childhood onset mild phenotype, while his mother with MFN2 variant developed bilateral pes cavus only. A CMT2 patient with heterozygous variants in MFN2 (c.839G>A, p.R280H) and GDAP1 (c.3G>T, p.M1?) presented infantile onset and rapid progression, while her father with MFN2 variant presented with absence of deep tendon reflexes. One sporadic CMT2 patient with early onset was confirmed harboring de novo MFN2 variant (c.1835C>T, p.S612F) and heterozygous GDAP1 variant (c.767A>G, p.H256R). CONCLUSION: Our results suggest that the possibility of concomitant variants was not uncommon and should be considered when significant intrafamilial clinical heterogeneity is observed.

7.
Front Neurol ; 11: 603003, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33381078

RESUMEN

Background and Objectives: Distal hereditary motor neuropathy (dHMN) is a clinically and genetically heterogeneous group of inherited neuropathies. The objectives of this study were to report the clinical and genetic features of dHMN patients in a Chinese cohort. Aims and Methods: We performed clinical assessments and whole-exome sequencing in 24 dHMN families from Mainland China. We conducted a retrospective analysis of the data and investigated the frequency and clinical features of patients with a confirmed mutation. Results: Two novel heterozygous mutations in GARS, c.373G>C (p.E125Q) and c.1015G>A (p.G339R), were identified and corresponded to the typical dHMN-V phenotype. Together with families with WARS, SORD, SIGMAR1, and HSPB1 mutations, 29.2% of families (7/24) acquired a definite genetic diagnosis. One novel heterozygous variant of uncertain significance, c.1834G>A (p.G612S) in LRSAM1, was identified in a patient with mild dHMN phenotype. Conclusion: Our study expanded the mutation spectrum of GARS mutations and added evidence that GARS mutations are associated with both axonal Charcot-Marie-Tooth and dHMN phenotypes. Mutations in genes encoding aminoamide tRNA synthetase (ARS) might be a frequent cause of autosomal dominant-dHMN, and SORD mutation might account for a majority of autosomal recessive-dHMN cases. The relatively low genetic diagnosis yield indicated more causative dHMN genes need to be discovered.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA