Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
EMBO J ; 38(2)2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30523147

RESUMEN

Proper temporal and spatial activation of stem cells relies on highly coordinated cell signaling. The primary cilium is the sensory organelle that is responsible for transmitting extracellular signals into a cell. Primary cilium size, architecture, and assembly-disassembly dynamics are under rigid cell cycle-dependent control. Using mouse incisor tooth epithelia as a model, we show that ciliary dynamics in stem cells require the proper functions of a cholesterol-binding membrane glycoprotein, Prominin-1 (Prom1/CD133), which controls sequential recruitment of ciliary membrane components, histone deacetylase, and transcription factors. Nuclear translocation of Prom1 and these molecules is particularly evident in transit amplifying cells, the immediate derivatives of stem cells. The absence of Prom1 impairs ciliary dynamics and abolishes the growth stimulation effects of sonic hedgehog (SHH) treatment, resulting in the disruption of stem cell quiescence maintenance and activation. We propose that Prom1 is a key regulator ensuring appropriate response of stem cells to extracellular signals, with important implications for development, regeneration, and diseases.


Asunto(s)
Antígeno AC133/metabolismo , Cilios/metabolismo , Incisivo/citología , Antígeno AC133/genética , Animales , Núcleo Celular/metabolismo , Células Cultivadas , Humanos , Incisivo/metabolismo , Ratones , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Transporte de Proteínas , Transducción de Señal , Células Madre/citología , Células Madre/metabolismo
2.
Nanomedicine ; 11(8): 1975-84, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26238081

RESUMEN

Growth factor therapies to induce angiogenesis and thereby enhance the blood perfusion, hold tremendous potential to address the shortcomings of current impaired wound care modalities. Vascular endothelial growth factor stimulates (VEGF) wound healing via multiple mechanisms. Poly(lactic-co-glycolic acid) (PLGA) supplies lactate that accelerates neovascularization and promotes wound healing. Hence, we hypothesized that the administration of VEGF encapsulated in PLGA nanoparticles (PLGA-VEGF NP) would promote fast healing due to the sustained and combined effects of VEGF and lactate. In a splinted mouse full thickness excision model, compared with untreated, VEGF and PLGA NP, PLGA-VEGF NP treated wounds showed significant granulation tissue formation with higher collagen content, re-epithelialization and angiogenesis. The cellular and molecular studies revealed that PLGA-VEGF NP enhanced the proliferation and migration of keratinocytes and upregulated the expression of VEGFR2 at mRNA level. We demonstrated the combined effects of lactate and VEGF for active healing of non-diabetic and diabetic wounds. FROM THE CLINICAL EDITOR: The study of wound healing has been under a tremendous amount of research over recent years. In diabetic wounds, vasculopathy leading to localized ischemia would often result in delayed wound healing. In this article, the authors encapsulated vascular endothelial growth factor stimulates (VEGF) in PLGA nanoparticles and studies the potential pro-healing effects. It was found that the combination of these two components provided synergistic actions for healing. The encouraging results should provide a basis for combination therapy in the future.


Asunto(s)
Complicaciones de la Diabetes/tratamiento farmacológico , Ácido Láctico/uso terapéutico , Nanopartículas/uso terapéutico , Ácido Poliglicólico/uso terapéutico , Factor A de Crecimiento Endotelial Vascular/uso terapéutico , Cicatrización de Heridas/efectos de los fármacos , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Colágeno/metabolismo , Complicaciones de la Diabetes/metabolismo , Complicaciones de la Diabetes/patología , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Queratinocitos/patología , Ácido Láctico/administración & dosificación , Ratones , Nanopartículas/administración & dosificación , Neovascularización Fisiológica/efectos de los fármacos , Peroxidasa/metabolismo , Ácido Poliglicólico/administración & dosificación , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Factor A de Crecimiento Endotelial Vascular/administración & dosificación
3.
Am J Hum Genet ; 88(2): 150-61, 2011 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-21295280

RESUMEN

Cranial neural crest (CNC) is a multipotent migratory cell population that gives rise to most of the craniofacial bones. An intricate network mediates CNC formation, epithelial-mesenchymal transition, migration along distinct paths, and differentiation. Errors in these processes lead to craniofacial abnormalities, including cleft lip and palate. Clefts are the most common congenital craniofacial defects. Patients have complications with feeding, speech, hearing, and dental and psychological development. Affected by both genetic predisposition and environmental factors, the complex etiology of clefts remains largely unknown. Here we show that Fas-associated factor-1 (FAF1) is disrupted and that its expression is decreased in a Pierre Robin family with an inherited translocation. Furthermore, the locus is strongly associated with cleft palate and shows an increased relative risk. Expression studies show that faf1 is highly expressed in zebrafish cartilages during embryogenesis. Knockdown of zebrafish faf1 leads to pharyngeal cartilage defects and jaw abnormality as a result of a failure of CNC to differentiate into and express cartilage-specific markers, such as sox9a and col2a1. Administration of faf1 mRNA rescues this phenotype. Our findings therefore identify FAF1 as a regulator of CNC differentiation and show that it predisposes humans to cleft palate and is necessary for lower jaw development in zebrafish.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Fisura del Paladar/etiología , Regulación del Desarrollo de la Expresión Génica , Mutación/genética , Cresta Neural/metabolismo , Proteínas de Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Proteínas Reguladoras de la Apoptosis , Western Blotting , Cartílago/metabolismo , Diferenciación Celular , Fisura del Paladar/patología , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Femenino , Humanos , Hibridación Fluorescente in Situ , Masculino , Cresta Neural/patología , Linaje , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
4.
Stem Cells ; 30(11): 2460-71, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22911908

RESUMEN

One of the key challenges in bone tissue engineering is the timely formation of blood vessels that promote the survival of the implanted cells in the construct. Fracture healing largely depends on the presence of an intact periosteum but it is still unknown whether periosteum-derived cells (PDC) are critical for bone repair only by promoting bone formation or also by inducing neovascularization. We first established a protocol to specifically isolate murine PDC (mPDC) from long bones of adult mice. Mesenchymal stem cells were abundantly present in this cell population as more than 50% of the mPDC expressed mesenchymal markers (CD73, CD90, CD105, and stem cell antigen-1) and the cells exhibited trilineage differentiation potential (chondrogenic, osteogenic, and adipogenic). When transplanted on a collagen-calcium phosphate scaffold in vivo, mPDC attracted numerous blood vessels and formed mature bone which comprises a hematopoiesis-supportive stroma. We explored the proangiogenic properties of mPDC using in vitro culture systems and showed that mPDC promote the survival and proliferation of endothelial cells through the production of vascular endothelial growth factor. Coimplantation with endothelial cells demonstrated that mPDC can enhance vasculogenesis by adapting a pericyte-like phenotype, in addition to their ability to stimulate blood vessel ingrowth from the host. In conclusion, these findings demonstrate that periosteal cells contribute to fracture repair, not only through their strong osteogenic potential but also through their proangiogenic features and thus provide an ideal cell source for bone regeneration therapies.


Asunto(s)
Huesos/irrigación sanguínea , Células Madre Mesenquimatosas/fisiología , Neovascularización Fisiológica , Osteogénesis , Periostio/citología , Animales , Antígenos CD/metabolismo , Regeneración Ósea , Sustitutos de Huesos , Huesos/citología , Huesos/fisiología , Fosfatos de Calcio , Diferenciación Celular , Hipoxia de la Célula , Separación Celular , Supervivencia Celular , Células Cultivadas , Técnicas de Cocultivo , Colágeno , Femenino , Citometría de Flujo , Humanos , Masculino , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Ratones Transgénicos , Cultivo Primario de Células , Ingeniería de Tejidos , Andamios del Tejido , Factor A de Crecimiento Endotelial Vascular/metabolismo
5.
J Biomed Mater Res A ; 102(7): 2345-55, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23946111

RESUMEN

We hypothesized that vascular endothelial growth factor (VEGF)-containing hydrogels that gelify in situ after injection into a traumatized spinal cord, could stimulate spinal cord regeneration. Injectable hydrogels composed of 0.5% Pronova UPMVG MVG alginate, supplemented or not with fibrinogen, were used. The addition of fibrinogen to alginate had no effect on cell proliferation in vitro but supported neurite growth ex vivo. When injected into a rat spinal cord in a hemisection model, alginate supplemented with fibrinogen was well tolerated. The release of VEGF that was incorporated into the hydrogel was influenced by the VEGF formulation [encapsulated in microspheres or in nanoparticles or in solution (free)]. A combination of free VEGF and VEGF-loaded nanoparticles was mixed with alginate:fibrinogen and injected into the lesion of the spinal cord. Four weeks post injection, angiogenesis and neurite growth were increased compared to hydrogel alone. The local delivery of VEGF by injectable alginate:fibrinogen-based hydrogel induced some plasticity in the injured spinal cord involving fiber growth into the lesion site.


Asunto(s)
Hidrogeles , Plasticidad Neuronal , Traumatismos de la Médula Espinal/fisiopatología , Factor A de Crecimiento Endotelial Vascular/administración & dosificación , Animales , Materiales Biocompatibles , Ratones , Células 3T3 NIH , Ratas
6.
J Control Release ; 150(3): 272-8, 2011 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-21130820

RESUMEN

In most cases, vascularization is the first requirement to achieve tissue regeneration. The delivery from implants of angiogenic factors, like VEGF, has been widely investigated for establishing a vascular network within the developing tissue. In this report, we investigated if encapsulation of VEGF in nanoparticles could enhance angiogenesis in vivo as compared to free VEGF when incorporated into two different types of 3D matrices: Matrigel™ hydrogels and PLGA scaffolds. Negatively charged nanoparticles encapsulating VEGF were obtained with a high efficiency by complex formation with dextran sulfate and coacervation by chitosan. After 2weeks, encapsulation reduced VEGF release from hydrogels from 30% to 1% and increased VEGF release from scaffolds from 20% to 30% in comparison with free VEGF. VEGF encapsulation consistently improved angiogenesis in vivo with both type of 3D matrices: up to 7.5- to 3.5-times more endothelial and red blood cells were observed, respectively, into hydrogels and scaffolds. Hence, encapsulation in nanoparticles enhanced VEGF efficiency by protection and controlled release from 3D implants. Encapsulation and incorporation of VEGF into 3D implants that, in addition to sustaining cell infiltration and organization, will stimulate blood vessel are a promising approach for tissue regeneration engineering.


Asunto(s)
Implantes Absorbibles , Hidrogeles/química , Neovascularización Fisiológica/efectos de los fármacos , Factores de Crecimiento Endotelial Vascular/administración & dosificación , Animales , Femenino , Ácido Láctico/química , Ratones , Ratones Endogámicos BALB C , Nanopartículas/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ratas , Proteínas Recombinantes/administración & dosificación , Ingeniería de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA