Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Acc Chem Res ; 56(13): 1826-1837, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37225704

RESUMEN

Functional ligands consist of a wide range of small or large molecules that exhibit a spectrum of physical, chemical, and biological properties. A suite of small molecules (e.g., peptides) or macromolecular ligands (e.g., antibodies and polymers) have been conjugated to particle surfaces for specific applications. However, postfunctionalization of ligands often presents challenges in controlling the surface density and may require the chemical modification of ligands. As an alternative option to postfunctionalization, our work has focused on using functional ligands as building blocks to assemble particles while maintaining their intrinsic (functional) properties. Through self-assembly or template-mediated assembly strategies, we have developed a range of protein-, peptide-, DNA-, polyphenol-, glycogen-, and polymer-based particles. This Account discusses the assembly of such nanoengineered particles, which includes self-assembled nanoparticles, hollow capsules, replica particles, and core-shell particles, according to three categories of functional ligands (i.e., small molecules, polymers, and biomacromolecules) that are used as building blocks for their formation. We discuss a range of covalent and noncovalent interactions among ligand molecules that have been explored to facilitate the assembly of particles. The physicochemical properties of the particles, including size, shape, surface charge, permeability, stability, thickness, stiffness, and stimuli-responsiveness, can be readily controlled by varying the ligand building block or by tuning the assembly method. By selecting specific ligands as building blocks, the bio-nano interactions (i.e., stealth, targeting, and cell trafficking) can also be modulated. For instance, particles composed mainly of low-fouling polymers (i.e., poly(ethylene glycol)) exhibit an extended blood circulation time (half-life > 12 h), while antibody-based nanoparticles demonstrate that a trade-off between stealth and targeting may be required when designing targeting nanoparticle systems. Small molecular ligands, such as polyphenols, have been used as building blocks for particle assembly as they can interact with various biomacromolecules through multiple noncovalent interactions, retain the function of biomacromolecules within the assembly, enable pH-responsive disassembly when coordinating with metal ions, and facilitate endosomal escape of nanoparticles. A perspective is provided on the current challenges associated with the clinical translation of ligand-based nanoparticles. This Account is also expected to serve as a reference to guide the fundamental research and development of functional particle systems assembled from various ligands for diverse applications.


Asunto(s)
Polietilenglicoles , Polímeros , Ligandos , Polímeros/química , Polietilenglicoles/química , Proteínas , Péptidos , Anticuerpos
2.
J Am Chem Soc ; 145(44): 24108-24115, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37788442

RESUMEN

Protocells have garnered considerable attention from cell biologists, materials scientists, and synthetic biologists. Phase-separating coacervate microdroplets have emerged as a promising cytomimetic model because they can internalize and concentrate components from dilute surrounding environments. However, the membrane-free nature of such coacervates leads to coalescence into a bulk phase, a phenomenon that is not representative of the cells they are designed to mimic. Herein, we develop a membranized peptide coacervate (PC) with oppositely charged oligopeptides as the molecularly crowded cytosol and a metal-phenolic network (MPN) coating as the membrane. The hybrid protocell efficiently internalizes various bioactive macromolecules (e.g., bovine serum albumin and immunoglobulin G) (>90%) while also resisting radicals due to the semipermeable cytoprotective membrane. Notably, the resultant PC@MPNs are capable of anabolic cascade reactions and remain in discrete protocellular populations without coalescence. Finally, we demonstrate that the MPN protocell membrane can be postfunctionalized with various functional molecules (e.g., folic acid and fluorescence dye) to more closely resemble actual cells with complex membranes, such as recognition molecules, which allows for drug delivery. This membrane-bound cytosolic protocell structure paves the way for innovative synthetic cells with structural and functional complexity.


Asunto(s)
Células Artificiales , Células Artificiales/química , Péptidos , Albúmina Sérica Bovina/química , Sustancias Macromoleculares
3.
Biomacromolecules ; 24(7): 3203-3214, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37307231

RESUMEN

Protease-responsive multi-arm polyethylene glycol-based microparticles with biscysteine peptide crosslinkers (CGPGG↓LAGGC) were obtained for intradermal drug delivery through inverse suspension photopolymerization. The average size of the spherical hydrated microparticles was ∼40 µm after crosslinking, making them attractive as a skin depot and suitable for intradermal injections, as they are readily dispensable through 27G needles. The effects of exposure to matrix metalloproteinase 9 (MMP-9) on the microparticles were evaluated by scanning electron microscopy and atomic force microscopy, demonstrating partial network destruction and decrease in elastic moduli. Given the recurring course of many skin diseases, the microparticles were exposed to MMP-9 in a flare-up mimicking fashion (multiple-time exposure), showing a significant increase in release of tofacitinib citrate (TC) from the MMP-responsive microparticles, which was not seen for the non-responsive microparticles (polyethylene glycol dithiol crosslinker). It was found that the degree of multi-arm complexity of the polyethylene glycol building blocks can be utilized to tune not only the release profile of TC but also the elastic moduli of the hydrogel microparticles, with Young's moduli ranging from 14 to 140 kPa going from 4-arm to 8-arm MMP-responsive microparticles. Finally, cytotoxicity studies conducted with skin fibroblasts showed no reduction in metabolic activity after 24 h exposure to the microparticles. Overall, these findings demonstrate that protease-responsive microparticles exhibit the properties of interest for intradermal drug delivery.


Asunto(s)
Hidrogeles , Metaloproteinasa 9 de la Matriz , Hidrogeles/química , Péptido Hidrolasas , Sistemas de Liberación de Medicamentos , Polietilenglicoles/química
4.
Biomacromolecules ; 24(1): 387-399, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36469858

RESUMEN

Herein, we report a platform to integrate customizable quantities of catechol units into polymers by reacting caffeic acid carbonic anhydride with polymers having pendant amine groups. Brush poly(ethylene glycol)-caffeamide (PEG-CAF) copolymers based on oligo(ethylene glycol)methyl ether methacrylate (OEGMA500) were obtained with a catechol content of approximately 30, 40, and 50 mol % (vs OEGMA content). Owing to the hydrophobicity of the introduced CAF groups, the catechol copolymers exhibited cloud points in the range of 23-46 °C and were used to fabricate thermoresponsive FeIII metal-phenolic network capsules. Polymers with the highest CAF content (50 mol %) proved most effective for attenuating reactive oxygen species levels in vitro, in co-cultured fibroblasts, and breast cancer cells, even in the presence of an exogenous oxidant source. The reported approach to synthesize customizable catechol materials could be generalized to other amine-functional polymers, with potential biomedical applications such as adhesives or stimuli-responsive drug delivery systems.


Asunto(s)
Polietilenglicoles , Polímeros , Polímeros/farmacología , Compuestos Férricos , Catecoles , Estrés Oxidativo
5.
J Am Chem Soc ; 144(40): 18419-18428, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36166420

RESUMEN

Surface modification with poly(ethylene glycol) (PEGylation) is an effective strategy to improve the colloidal stability of nanoparticles (NPs) and is often used to minimize cellular uptake and clearance of NPs by the immune system. However, PEGylation can also trigger the accelerated blood clearance (ABC) phenomenon, which is known to reduce the circulation time of PEGylated NPs. Herein, we report the engineering of stealth PEG NPs that can avoid the ABC phenomenon and, when modified with hyaluronic acid (HA), show specific cancer cell targeting and drug delivery. PEG NPs cross-linked with disulfide bonds are prepared by using zeolitic imidazolate framework-8 NPs as templates. The reported templating strategy enables the simultaneous removal of the template and formation of PEG NPs under mild conditions (pH 5.5 buffer). Compared to PEGylated liposomes, PEG NPs avoid the secretion of anti-PEG antibodies and the presence of anti-PEG IgM and IgG did not significantly accelerate the blood clearance of PEG NPs, indicating the inhibition of the ABC effect for the PEG NPs. Functionalization of the PEG NPs with HA affords PEG NPs that retain their stealth properties against macrophages, target CD44-expressed cancer cells and, when loaded with the anticancer drug doxorubicin, effectively inhibit tumor growth. The innovation of this study lies in the engineering of PEG NPs that can circumvent the ABC phenomenon and that can be functionalized for the improved and targeted delivery of drugs.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Antineoplásicos/química , Disulfuros , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Humanos , Ácido Hialurónico/química , Inmunoglobulina G , Inmunoglobulina M/uso terapéutico , Liposomas , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Polietilenglicoles/química
6.
Biomacromolecules ; 22(2): 612-619, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33337863

RESUMEN

Poly(ethylene glycol) (PEG) is well known to endow nanoparticles (NPs) with low-fouling and stealth-like properties that can reduce immune system clearance in vivo, making PEG-based NPs (particularly sub-100 nm) of interest for diverse biomedical applications. However, the preparation of sub-100 nm PEG NPs with controllable size and morphology is challenging. Herein, we report a strategy based on the noncovalent coordination between PEG-polyphenolic ligands (PEG-gallol) and transition metal ions using a water-in-oil microemulsion phase to synthesize sub-100 nm PEG NPs with tunable size and morphology. The metal-phenolic coordination drives the self-assembly of the PEG-gallol/metal NPs: complexation between MnII and PEG-gallol within the microemulsions yields a series of metal-stabilized PEG NPs, including 30-50 nm solid and hollow NPs, depending on the MnII/gallol feed ratio. Variations in size and morphology are attributed to the changes in hydrophobicity of the PEG-gallol/MnII complexes at varying MnII/gallol ratios based on contact angle measurements. Small-angle X-ray scattering analysis, which is used to monitor the particle size and intermolecular interactions during NP evolution, reveals that ionic interactions are the dominant driving force in the formation of the PEG-gallol/MnII NPs. pH and cytotoxicity studies, and the low-fouling properties of the PEG-gallol/MnII NPs confirm their high biocompatibility and functionality, suggesting that PEG polyphenol-metal NPs are promising systems for biomedical applications.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Interacciones Hidrofóbicas e Hidrofílicas , Tamaño de la Partícula , Polietilenglicoles
7.
Biomacromolecules ; 20(3): 1421-1428, 2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30794387

RESUMEN

Metal-phenolic network (MPN) coatings have generated increasing interest owing to their biologically inspired nature, facile fabrication, and near-universal adherence, especially for biomedical applications. However, a key issue in biomedicine is protein fouling, and the adsorption of proteins on tannic acid-based MPNs remains to be comprehensively studied. Herein, we investigate the interaction of specific biomedically relevant proteins in solution (e.g., bovine serum albumin (BSA), immunoglobulin G (IgG), fibrinogen) and complex biological media (serum) using layer-by-layer-assembled tannic acid/FeIII MPN films. When FeIII was the outermost layer, galloyl-modified poly(2-ethyl-2-oxazoline) (P(EtOx)-Gal) could be grafted to the films through coordination bonds. Protein fouling and bacterial adhesion were greatly suppressed after functionalization with P(EtOx)-Gal and the mass of adsorbed protein was reduced by 79%. Interestingly, larger proteins adsorbed more on both the MPNs and P(EtOx)-functionalized MPNs. This study provides fundamental information on the interactions of MPNs with single proteins, mixtures of proteins as encountered in serum, and the noncovalent, coordination-based, functionalization of MPN films.


Asunto(s)
Complejos de Coordinación/química , Metales/química , Fenoles/química , Polímeros/química , Proteínas/química , Adsorción , Adhesión Bacteriana , Inmunoglobulina G/química , Albúmina Sérica Bovina/química
8.
Biomacromolecules ; 20(9): 3592-3600, 2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31448896

RESUMEN

Drug carriers typically require both stealth and targeting properties to minimize nonspecific interactions with healthy cells and increase specific interaction with diseased cells. Herein, the assembly of targeted poly(ethylene glycol) (PEG) particles functionalized with cyclic peptides containing Arg-Gly-Asp (RGD) (ligand) using a mesoporous silica templating method is reported. The influence of PEG molecular weight, ligand-to-PEG molecule ratio, and particle size on cancer cell targeting to balance stealth and targeting of the engineered PEG particles is investigated. RGD-functionalized PEG particles (PEG-RGD particles) efficiently target U-87 MG cancer cells under static and flow conditions in vitro, whereas PEG and cyclic peptides containing Arg-Asp-Gly (RDG)-functionalized PEG (PEG-RDG) particles display negligible interaction with the same cells. Increasing the ligand-to-PEG molecule ratio improves cell targeting. In addition, the targeted PEG-RGD particles improve cell uptake via receptor-mediated endocytosis, which is desirable for intracellular drug delivery. The PEG-RGD particles show improved tumor targeting (14% ID g-1) when compared with the PEG (3% ID g-1) and PEG-RDG (7% ID g-1) particles in vivo, although the PEG-RGD particles show comparatively higher spleen and liver accumulation. The targeted PEG particles represent a platform for developing particles aimed at balancing nonspecific and specific interactions in biological systems.


Asunto(s)
Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Oligopéptidos/farmacología , Polietilenglicoles/farmacología , Animales , Línea Celular Tumoral , Citoplasma/efectos de los fármacos , Endocitosis/efectos de los fármacos , Humanos , Ligandos , Oligopéptidos/química , Polietilenglicoles/química , Transducción de Señal/efectos de los fármacos , Dióxido de Silicio/química , Dióxido de Silicio/farmacología , Propiedades de Superficie
9.
Small ; 14(39): e1802342, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30156378

RESUMEN

Interfacial self-assembly is a powerful organizational force for fabricating functional nanomaterials, including nanocarriers, for imaging and drug delivery. Herein, the interfacial self-assembly of pH-responsive metal-phenolic networks (MPNs) on the liquid-liquid interface of oil-in-water emulsions is reported. Oleic acid emulsions of 100-250 nm in diameter are generated by ultrasonication, to which poly(ethylene glycol) (PEG)-based polyphenolic ligands are assembled with simultaneous crosslinking by metal ions, thus forming an interfacial MPN. PEG provides a protective barrier on the emulsion phase and renders the emulsion low fouling. The MPN-coated emulsions have a similar size and dispersity, but an enhanced stability when compared with the uncoated emulsions, and exhibit a low cell association in vitro, a blood circulation half-life of ≈50 min in vivo, and are nontoxic to healthy mice. Furthermore, a model anticancer drug, doxorubicin, can be encapsulated within the emulsion phase at a high loading capacity (≈5 fg of doxorubicin per emulsion particle). The MPN coating imparts pH-responsiveness to the drug-loaded emulsions, leading to drug release at cell internalization pH and a potent cell cytotoxicity. The results highlight a straightforward strategy for the interfacial nanofabrication of pH-responsive emulsion-MPN systems with potential use in biomedical applications.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Emulsiones/química , Nanoestructuras/química , Animales , Doxorrubicina/química , Concentración de Iones de Hidrógeno , Ratones , Ácido Oléico/química , Polietilenglicoles/química
10.
Langmuir ; 34(37): 10817-10827, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30132674

RESUMEN

The assembly of particles composed solely or mainly of poly(ethylene glycol) (PEG) is an emerging area that is gaining increasing interest within bio-nano science. PEG, widely considered to be the "gold standard" among polymers for drug delivery, is providing a platform for exploring fundamental questions and phenomena at the interface between particle engineering and biomedicine. These include the targeting and stealth behaviors of synthetic nanomaterials in biological environments. In this feature article, we discuss recent work in the nanoengineering of PEG particles and explore how they are enabling improved targeting and stealth performance. Specific examples include PEG particles prepared through surface-initiated polymerization, mesoporous silica replication via postinfiltration, and particle assembly through metal-phenolic coordination. This particle class exhibits unique in vivo behavior (e.g., biodistribution and immune cell interactions) and has recently been explored for drug delivery applications.


Asunto(s)
Portadores de Fármacos/química , Nanopartículas/química , Polietilenglicoles/química , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Doxorrubicina/farmacología , Humanos , Nanotecnología/métodos , Compuestos Organoplatinos/farmacología , Tamaño de la Partícula , Polimerizacion , Profármacos/farmacología
11.
Biomacromolecules ; 19(7): 2580-2594, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29668268

RESUMEN

The formation of a biomolecular corona around engineered particles determines, in large part, their biological behavior in vitro and in vivo. To gain a fundamental understanding of how particle design and the biological milieu influence the formation of the "hard" biomolecular corona, we conduct a series of in vitro studies using microfluidics. This setup allows the generation of a dynamic incubation environment with precise control over the applied flow rate, stream orientation, and channel dimensions, thus allowing accurate control of the fluid flow and the shear applied to the proteins and particles. We used mesoporous silica particles, poly(2-methacryloyloxyethylphosphorylcholine) (PMPC)-coated silica hybrid particles, and PMPC replica particles (obtained by removal of the silica particle templates), representing high-, intermediate-, and low-fouling particle systems, respectively. The protein source used in the experiments was either human serum or human full blood. The effects of flow, particle surface properties, incubation medium, and incubation time on the formation of the biomolecular corona formation are examined. Our data show that protein adhesion on particles is enhanced after incubation in human blood compared to human serum and that dynamic incubation leads to a more complex corona. By varying the incubation time from 2 s to 15 min, we demonstrate that the "hard" biomolecular corona is kinetically subdivided into two phases comprising a tightly bound layer of proteins interacting directly with the particle surface and a loosely associated protein layer. Understanding the influence of particle design parameters and biological factors on the corona composition, as well as its dynamic assembly, may facilitate more accurate prediction of corona formation and therefore assist in the design of advanced drug delivery vehicles.


Asunto(s)
Microfluídica/métodos , Corona de Proteínas/química , Proteínas Sanguíneas/química , Humanos , Microfluídica/instrumentación , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Ácidos Polimetacrílicos/química , Dióxido de Silicio/química
12.
Bioconjug Chem ; 28(7): 1859-1866, 2017 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28548819

RESUMEN

Particle-cell interactions are governed by, among other factors, the composition and surface properties of the particles. Herein, we report the preparation of various polymer capsules with different compositions and properties via atom transfer radical polymerization mediated continuous assembly of polymers (CAPATRP), where the cellular interactions of these capsules, particularly fouling and specific targeting, are examined by flow cytometry and deconvolution microscopy. Acrylated eight-arm poly(ethylene glycol) (8-PEG) and poly(N-(2-hydroxypropyl)-methacrylamide) (PHPMA) as well as methacrylated hyaluronic acid (HA), poly(glutamic acid) (PGA), and poly(methacrylic acid) (PMA) are used as macro-cross-linkers to obtain a range of polymer capsules with different compositions (PEG, PHPMA, HA, PGA, and PMA). Capsules composed of low-fouling polymers, PEG and PHPMA, show negligible association with macrophage Raw 264.7, monocyte THP-1, and HeLa cells. HA capsules, although moderately low-fouling (<22%) to HeLa, BT474, Raw 264.7, and THP-1 cells, exhibit high targeting specificity to CD44-over-expressing MDA-MB-231 cells. In contrast, PGA and PMA capsules show high cellular association toward phagocytic Raw 264.7 and THP-1 cells. These findings demonstrate the capability of the CAPATRP technique in preparing polymer capsules with specific cellular interactions.


Asunto(s)
Membrana Celular/metabolismo , Polímeros/química , Animales , Cápsulas/síntesis química , Cápsulas/química , Cápsulas/metabolismo , Reactivos de Enlaces Cruzados/química , Citometría de Flujo , Células HeLa , Humanos , Ratones , Microscopía , Polímeros/síntesis química , Polímeros/metabolismo , Células RAW 264.7 , Propiedades de Superficie
13.
Bioconjug Chem ; 28(1): 75-80, 2017 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-28095687

RESUMEN

Engineered materials that promote cell adhesion and cell growth are important in tissue engineering and regenerative medicine. In this work, we produced poly(dopamine) (PDA) films with engineered patterns for improved cell adhesion. The patterned films were synthesized via the polymerization of dopamine at the air-water interface of a floating bed of spherical particles. Subsequent dissolution of the particles yielded free-standing PDA films with tunable geometrical patterns. Our results show that these patterned PDA films significantly enhance the adhesion of both cancer cells and stem cells, thus showing promise as substrates for cell attachment for various biomedical applications.


Asunto(s)
Adhesión Celular , Indoles/química , Polímeros/química , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Propiedades de Superficie
14.
Acc Chem Res ; 49(6): 1139-48, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27203418

RESUMEN

Nanoengineered materials offer tremendous promise for developing the next generation of therapeutics. We are transitioning from simple research questions, such as "can this particle eradicate cancer cells?" to more sophisticated ones like "can we design a particle to preferentially deliver cargo to a specific cancer cell type?" These developments are poised to usher in a new era of nanoengineered drug delivery systems. We primarily work with templating methods for engineering polymer particles and investigate their biological interactions. Templates are scaffolds that facilitate the formation of particles with well-controlled size, shape, structure, stiffness, stability, and surface chemistry. In the past decade, breakthroughs in engineering new templates, combined with advances in coating techniques, including layer-by-layer (LbL) assembly, surface polymerization, and metal-phenolic network (MPN) coordination chemistry, have enabled particles with specific physicochemical properties to be engineered. While materials science offers an ever-growing number of new synthesis techniques, a central challenge of therapeutic delivery has become understanding how nanoengineered materials interact with biological systems. Increased collaboration between chemists, biologists, and clinicians has resulted in a vast research output on bio-nano interactions. Our understanding of cell-particle interactions has grown considerably, but conventional in vitro experimentation provides limited information, and understanding how to bridge the in vitro/in vivo gap is a continuing challenge. As has been demonstrated in other fields, there is now a growing interest in applying computational approaches to advance this area. A considerable knowledge base is now emerging, and with it comes new and exciting opportunities that are already being capitalized on through the translation of materials into the clinic. In this Account, we outline our perspectives gained from a decade of work at the interface between polymer particle engineering and bio-nano interactions. We divide our research into three areas: (i) biotrafficking, including cellular association, intracellular transport, and biodistribution; (ii) biodegradation and how to achieve controlled, responsive release of therapeutics; and (iii) applications, including drug delivery, controlling immunostimulatory responses, biosensing, and microreactors. There are common challenges in these areas for groups developing nanoengineered therapeutics. A key "lesson-learned" has been the considerable challenge of staying informed about the developments relevant to this field. There are a number of reasons for this, most notably the interdisciplinary nature of the work, the large numbers of researchers and research outputs, and the limited standardization in technique nomenclature. Additionally, a large body of work is being generated with limited central archiving, other than vast general databases. To help address these points, we have created a web-based tool to organize our past, present, and future work [Bio-nano research knowledgebase, http://bionano.eng.unimelb.edu.au/knowledge_base/ (accessed May 2, 2016)]. This tool is intended to serve as a first step toward organizing results in this large, complex area. We hope that this will inspire researchers, both in generating new ideas and also in collecting, collating, and sharing their experiences to guide future research.


Asunto(s)
Nanotecnología , Polímeros/química , Animales , Materiales Biocompatibles , Portadores de Fármacos , Humanos
15.
Biomacromolecules ; 18(7): 2118-2127, 2017 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-28617594

RESUMEN

In this study, we report a versatile method to assemble tunable poly(ethylene glycol) (PEG)-based polyrotaxane (PRX) particles and capsules. By threading α-cyclodextrins (αCDs) onto PEG chains physically adsorbed onto template particles and subsequently dissolving the templates, PRX replica particles and hollow capsules are formed. This approach overcomes issues related to CD steric hindrance, and also reduces the multiple processing steps often associated with PRX-based particle formation. By simple variation of the molecular weight and end-group functionality of the PEG, we show that the rate of particle degradation as well as the stability of the particles can be tuned. We also demonstrate the loading and release of model (drug) compounds, achieving burst and controlled release of the compounds. It is envisaged that this approach will provide a flexible platform for the engineering of a diverse range of PRX-based particles, enabling PRX materials to be further explored in various applications.


Asunto(s)
Ciclodextrinas/química , Poloxámero/química , Polietilenglicoles/química , Rotaxanos/química , alfa-Ciclodextrinas/química
16.
Angew Chem Int Ed Engl ; 56(29): 8510-8515, 2017 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-28582605

RESUMEN

A bioactive synthetic porous shell was engineered to enable cells to survive in an oligotrophic environment. Eukaryotic cells (yeast) were firstly coated with a ß-galactosidase (ß-gal), before crystallization of a metal-organic framework (MOF) film on the enzyme coating; thereby producing a bioactive porous synthetic shell. The ß-gal was an essential component of the bioactive shell as it generated nutrients (that is, glucose and galactose) required for cell viability in nutrient-deficient media (lactose-based). Additionally, the porous MOF coating carried out other vital functions, such as 1) shielding the cells from cytotoxic compounds and radiation, 2) protecting the non-native enzymes (ß-gal in this instance) from degradation and internalization, and 3) allowing for the diffusion of molecules essential for the survival of the cells. Indeed, this bioactive porous shell enabled the survival of cells in simulated extreme oligotrophic environments for more than 7 days, leading to a decrease in cell viability less than 30 %, versus a 99 % decrease for naked yeast. When returned to optimal growth conditions the bioactive porous exoskeleton could be removed and the cells regained full growth immediately. The construction of bioactive coatings represents a conceptually new and promising approach for the next-generation of cell-based research and application, and is an alternative to synthetic biology or genetic modification.


Asunto(s)
Células Artificiales/metabolismo , Estructuras Metalorgánicas/metabolismo , beta-Galactosidasa/metabolismo , Células Artificiales/química , Supervivencia Celular , Estructuras Metalorgánicas/química , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , beta-Galactosidasa/química
17.
Biomacromolecules ; 17(3): 1205-12, 2016 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-26919729

RESUMEN

Particles with tailored geometries have received significant attention due to their specific interactions with biological systems. In this work, we examine the effect of polymer capsule shape on cytokine secretion by human monocyte-derived macrophages. Thiolated poly(methacrylic acid) (PMASH) polymer capsules with different shapes (spherical, short rod-shaped, and long rod-shaped) were prepared by layer-by-layer assembly. The effect of PMASH capsule shape on cellular uptake and cytokine secretion by macrophages differentiated from THP-1 monocytes (dTHP-1) was investigated. PMASH capsules with different shapes were internalized to a similar extent in dTHP-1 cells. However, cytokine secretion was influenced by capsule geometry: short rod-shaped PMASH capsules promoted a stronger increase in TNF-α and IL-8 secretion compared with spherical (1.7-fold in TNF-α and 2.1-fold in IL-8) and long rod-shaped (2.8-fold in TNF-α and 2.0-fold in IL-8) PMASH capsules in dTHP-1 cells (capsule-to-cell ratio of 100:1). Our results indicate that the immunological response based on the release of cytokines is influenced by the shape of the polymer capsules, which could be potentially exploited in the rational design of particle carriers for vaccine delivery.


Asunto(s)
Interleucina-8/metabolismo , Macrófagos/efectos de los fármacos , Nanocápsulas/química , Ácidos Polimetacrílicos/química , Factor de Necrosis Tumoral alfa/metabolismo , Línea Celular , Humanos , Macrófagos/metabolismo , Nanocápsulas/ultraestructura , Compuestos de Sulfhidrilo/química
18.
Biomacromolecules ; 17(6): 2268-76, 2016 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-27249228

RESUMEN

We engineered metal-phenolic capsules with both high targeting and low nonspecific cell binding properties. The capsules were prepared by coating phenolic-functionalized hyaluronic acid (HA) and poly(ethylene glycol) (PEG) on calcium carbonate templates, followed by cross-linking the phenolic groups with metal ions and removing the templates. The incorporation of HA significantly enhanced binding and association with a CD44 overexpressing (CD44+) cancer cell line, while the incorporation of PEG reduced nonspecific interactions with a CD44 minimal-expressing (CD44-) cell line. Moreover, high specific targeting to CD44+ cells can be balanced with low nonspecific binding to CD44- cells simply by using an optimized feed-ratio of HA and PEG to vary the content of HA and PEG incorporated into the capsules. Loading an anticancer drug (i.e., doxorubicin) into the obtained capsules resulted in significantly higher cytotoxicity to CD44+ cells but lower cytotoxicity to CD44- cells.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Cápsulas/administración & dosificación , Doxorrubicina/farmacología , Ácido Hialurónico/química , Metales/química , Nanopartículas/administración & dosificación , Polietilenglicoles/química , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Cápsulas/química , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Portadores de Fármacos/química , Diseño de Fármacos , Femenino , Humanos , Receptores de Hialuranos/metabolismo , Nanopartículas/química , Células Tumorales Cultivadas
19.
Angew Chem Int Ed Engl ; 55(4): 1334-9, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26666207

RESUMEN

The induction of antigen-specific adaptive immunity exclusively occurs in lymphoid organs. As a consequence, the efficacy by which vaccines reach these tissues strongly affects the efficacy of the vaccine. Here, we report the design of polymer hydrogel nanoparticles that efficiently target multiple immune cell subsets in the draining lymph nodes. Nanoparticles are fabricated by infiltrating mesoporous silica particles (ca. 200 nm) with poly(methacrylic acid) followed by disulfide-based crosslinking and template removal. PEGylation of these nanoparticles does not affect their cellular association in vitro, but dramatically improves their lymphatic drainage in vivo. The functional relevance of these observations is further illustrated by the increased priming of antigen-specific T cells. Our findings highlight the potential of engineered hydrogel nanoparticles for the lymphatic delivery of antigens and immune-modulating compounds.


Asunto(s)
Hidrogeles , Ganglios Linfáticos/metabolismo , Nanopartículas , Polímeros/química , Vacunas/administración & dosificación , Animales , Antígenos CD/inmunología , Ganglios Linfáticos/inmunología , Ratones , Microscopía Electrónica de Transmisión
20.
Small ; 11(17): 2032-6, 2015 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-25556334

RESUMEN

A new class of pH-responsive capsules based on metal-phenolic networks (MPNs) for anticancer drug loading, delivery and release is reported. The fabrication of drug-loaded MPN capsules, which is based on the formation of coordination complexes between natural polyphenols and metal ions over a drug-coated template, represents a rapid strategy to engineer robust and versatile drug delivery carriers.


Asunto(s)
Antineoplásicos/administración & dosificación , Doxorrubicina/administración & dosificación , Portadores de Fármacos , Metales/química , Fenol/química , Antineoplásicos/química , Cápsulas/química , Línea Celular Tumoral , Supervivencia Celular , Endosomas/metabolismo , Citometría de Flujo , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Concentración 50 Inhibidora , Cinética , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Polímeros/química , Polifenoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA