Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biomed Microdevices ; 23(4): 57, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34762163

RESUMEN

Paclitaxel is a commonly used drug in the medical field because of its strong anticancer effect. However, it may produce relatively severe side effects (i.e., allergic reactions). A major characteristic of paclitaxel is low solubility in water. Special solvents are used for dissolving paclitaxel and preparing the paclitaxel drugs, while the solvents themselves will cause certain effects. Polyoxyethylene castor oil, for example, can cause severe allergic reactions in some people, and the clinical use is limited. In this study, we developed a new Paclitaxel/Poly-L-Lactic Acid (PLLA) nanoparticle drug, which is greatly soluble in water, and carried out in vitro drug sustained release research on it and the original paclitaxel drug. However, because the traditional polymer drug carrier usually uses dialysis bag and thermostatic oscillation system to measure the drug release degree in vitro, the results obtained are greatly different from the actual drug release results in human body. Therefore, this paper adopts the microfluidic chip we previously developed to mimic the human blood vessels microenvironment to study the sustained-release of Paclitaxel/PLLA nanoparticles to make the results closer to the release value in human body. The experimental results showed that compared with the original paclitaxel drug, Paclitaxel/PLLA nanoparticles have a long-sustained release time and a slow drug release, realizing the sustained low-dose release of paclitaxel, a cell cycle-specific anticancer drug, and provided certain reference significance and theoretical basis for the research and development of anticancer drugs.


Asunto(s)
Antineoplásicos Fitogénicos , Nanopartículas , Antineoplásicos Fitogénicos/farmacología , Portadores de Fármacos , Liberación de Fármacos , Humanos , Microfluídica , Paclitaxel/farmacología , Poliésteres , Diálisis Renal
2.
Int J Biol Macromol ; 134: 56-62, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31071394

RESUMEN

Suture is an important part of surgical operation, and closure of the wound associated with this procedure continuous to be a challenge in postoperative care. Currently, oxidized regenerated cellulose (ORC) is widely used in the absorption of hemostatic materials. However, there is no ORC medical suture product in the market. The objective of this article was to prepare novel braided sutures by TEMPO-mediated oxidation regenerated cellulose (TORC) to achieve a suturable material with biodegradability and ideal mechanical properties. Regenerated cellulose (RC) strands were made into sutures on a circular braiding machine, and TEMPO-mediated oxidation treatment was introduced alternatively after braiding. The RC sutures under different oxidation time were characterized by ATR-FTIR, electrical conductivity, XRD analysis, physical properties and in vitro degradation property. We further demonstrate that the RC sutures were oxidized and formed the carboxylic (-COOH) functional group. With the extension of oxidation duration, the carboxyl content in TORC sutures increased gradually from 5.1 to 10.4% and the strength, weight, and diameter of TORC sutures decreased gradually. Moreover, we proved that the knot-pull strength of TORC-45 declined by 77.8% after 28 days, thus this sutures fulfilled U.S. Pharmacopeia requirement of knot-pull strength. We have shown that TEMPO oxidation reaction significantly promoted the degradation of TORC sutures. Overall, TORC sutures were successfully produced with favorable biodegradability, revealing potential prospects of clinical applications.


Asunto(s)
Materiales Biocompatibles/química , Celulosa Oxidada/química , Celulosa/química , Suturas , Fenómenos Químicos , Hidrólisis , Ensayo de Materiales , Análisis Espectral , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA