Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Am Chem Soc ; 141(43): 17107-17111, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31614088

RESUMEN

Nanostructured supramolecular polymers (SPs) are filamentous assemblies possessing a high degree of internal order and have important uses in regenerative medicine, drug delivery, and soft matter electronics. Despite recent advances in functional SPs, a challenging topic is the development of robust assembly protocols enabling the incorporation of various functional units without altering its supramolecular architecture. We report here the robust tubular assembly of camptothecin (CPT) analogues into functional SPs. Covalent linkage of two CPT moieties to various short hydrophilic segments (e.g., nonionic, cationic, anionic, and zwitterionic) leads to a class of CPT analogues that self-assemble in water into tubular SPs. Systemic administration of nonionic SPs effectively suppresses tumor growth. Furthermore, these tubular SPs act as universal dispersing agents in water for low-molecular-weight hydrophobes.


Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/síntesis química , Camptotecina/análogos & derivados , Administración Intravenosa , Animales , Antineoplásicos Fitogénicos/química , Camptotecina/farmacocinética , Línea Celular Tumoral , Dicroismo Circular , Ciclización , Diseño de Fármacos , Liberación de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Dosis Máxima Tolerada , Ratones Desnudos , Microscopía Electrónica de Transmisión , Nanoestructuras/química , Polímeros/química , Agua/química , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Soft Matter ; 11(21): 4235-41, 2015 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-25892460

RESUMEN

We present a facile strategy to synthesize self-healable tough and highly stretchable hydrogels. Our design rationale for the creation of ionic cross-linked hydrogels is to graft an acrylic acid monomer on the surface of vinyl hybrid silica nanoparticles (VSNPs) for the growth of poly(acrylic) acid (PAA), and the obtained VSNP-PAA nanobrush can be used as a gelator. Physical cross-linking through hydrogen bonding and ferric ion-mediated ionic interactions between PAA polymer chains of the gelators yielded ionic nanocomposite physical hydrogels with excellent and balanced mechanical properties (tensile strength 860 kPa, elongation at break ∼2300%), and the ability to self-repair (tensile strength ∼560 kPa, elongation at break ∼1800%). The toughness and stretchability arise from the reversible cross-linking interactions between the polymer chains that help dissipate energy through stress (deformation) triggered dynamic processes. These unique properties will enable greater application of these hydrogel materials, especially in tissue engineering.


Asunto(s)
Hidrogeles/química , Nanocompuestos/química , Resinas Acrílicas/química , Iones/química , Dióxido de Silicio/química , Resistencia a la Tracción , Ingeniería de Tejidos
3.
Biomacromolecules ; 15(4): 1419-27, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24611531

RESUMEN

One-dimensional nanostructures formed by self-assembly of small molecule peptides have been extensively explored for use as biomaterials in various biomedical contexts. However, unlike individual peptides that can be designed to be specifically degradable by enzymes/proteases of interest, their self-assembled nanostructures, particularly those rich in ß-sheets, are generally resistant to enzymatic degradation because the specific cleavage sites are often embedded inside the nanostructures. We report here on the rational design of ß-sheet rich supramolecular filaments that can specifically dissociate into less stable micellar assemblies and monomers upon treatment with matrix metalloproteases-2 (MMP-2). Through linkage of an oligoproline segment to an amyloid-derived peptide sequence, we first synthesized an amphiphilic peptide that can undergo a rapid morphological transition in response to pH variations. We then used MMP-2 specific peptide substrates as multivalent cross-linkers to covalently fix the amyloid-like filaments in the self-assembled state at pH 4.5. Our results show that the cross-linked filaments are stable at pH 7.5 but gradually break down into much shorter filaments upon cleavage of the peptidic cross-linkers by MMP-2. We believe that the reported work presents a new design platform for the creation of amyloid-like supramolecular filaments responsive to enzymatic degradation.


Asunto(s)
Metaloendopeptidasas/metabolismo , Nanoestructuras/química , Péptidos/química , Ingeniería de Proteínas/métodos , Materiales Biocompatibles , Reactivos de Enlaces Cruzados , Concentración de Iones de Hidrógeno , Metaloproteinasa 2 de la Matriz/metabolismo , Peso Molecular , Péptidos/metabolismo , Estructura Secundaria de Proteína , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
4.
Biomater Sci ; 6(1): 216-224, 2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29214247

RESUMEN

Supramolecular filament hydrogels are an emerging class of biomaterials that hold great promise for regenerative medicine, tissue engineering, and drug delivery. However, fine-tuning of their bulk mechanical properties at the molecular level without altering their network structures remains a significant challenge. Here we report an isomeric strategy to construct amphiphilic peptides through the conjugation of isomeric hydrocarbons to influence the local viscoelastic properties of their resulting supramolecular hydrogels. In this case, the packing requirements of the chosen isomeric hydrocarbons within the supramolecular filaments are dictated by their atomic arrangements at the molecular and intermolecular levels. Atomistic molecular dynamics simulations suggest that this design strategy can subtly alter the molecular packing at the interface between the peptide domain and the hydrophobic core of the supramolecular assemblies, without changing both the filament width and morphology. Our results from wide-angle X-ray scattering and molecular simulations further confirm that alterations to the intermolecular packing at the interface impact the strength and degree of hydrogen bonding within the peptide domains. This subtle difference in the isomeric hydrocarbon design and their consequent packing difference led to variations in the persistence length of the individual supramolecular filaments. Microrheological analysis reveals that this difference in filament stiffness enables the fine-tuning of the mechanical properties of the hydrogel at the macroscopic scale. We believe that this isomeric platform provides an innovative method to tune the local viscoelastic properties of supramolecular polymeric hydrogels without necessarily altering their network structures.


Asunto(s)
Materiales Biocompatibles/química , Hidrogeles/química , Péptidos/química , Sistemas de Liberación de Medicamentos/métodos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Ingeniería de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA