Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 28(9)2023 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-37175356

RESUMEN

Oral health is crucial to daily life, yet many people worldwide suffer from oral diseases. With the development of oral tissue engineering, there is a growing demand for dental biomaterials. Addressing oral diseases often requires a two-fold approach: fighting bacterial infections and promoting tissue growth. Hydrogels are promising tissue engineering biomaterials that show great potential for oral tissue regeneration and drug delivery. In this review, we present a classification of hydrogels commonly used in dental research, including natural and synthetic hydrogels. Furthermore, recent applications of these hydrogels in endodontic restorations, periodontal tissues, mandibular and oral soft tissue restorations, and related clinical studies are also discussed, including various antimicrobial and tissue growth promotion strategies used in the dental applications of hydrogels. While hydrogels have been increasingly studied in oral tissue engineering, there are still some challenges that need to be addressed for satisfactory clinical outcomes. This paper summarizes the current issues in the abovementioned application areas and discusses possible future developments.


Asunto(s)
Hidrogeles , Ingeniería de Tejidos , Humanos , Materiales Biocompatibles/farmacología , Hidrogeles/farmacología , Periodoncio
2.
J Mater Sci Mater Med ; 29(11): 176, 2018 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-30426241

RESUMEN

Materials with low cell adhesion are advantageous for production of replacement intraocular lens (IOL) to prevent posterior capsular opacification (PCO). We evaluated the feasibility of compression molding for manufacture of silicone rubber with super-hydrophobic surface and low cell infiltrative characteristics compared to ordinary hydrophobic silicone rubber. Silicone specimens with complex surface topology (super-hydrophobic) or smooth surfaces (hydrophobic) were manufactured by vacuum deforming and molding. Contact angle, microscopic surface structure, and transparency were evaluated. Super-hydrophobic and smooth samples were compared for effects on proliferation, adhesion, and morphology of human lens epithelial cells (hLECs). Epithelial-mesenchymal transition (EMT) was examined by immunofluorescence expression of fibronectin (Fn), Alpha-smooth muscle actin (α-SMA), and vimentin. The surface contact angle of super-hydrophobic silicone was greater than that of smooth silicone (153.8° vs. 116°). The super-hydrophobic surface exhibited a micron-scale palisade structure under scanning electron microscopy (unit length, width, and height of 80, 25, and 25 µm, respectively). However, cell number per 50 × microscopic field on super-hydrophobic surfaces was markedly reduced 24 and 72 h post-seeding compared to smooth surfaces (p < 0.01). Cells were cuboidal or spherical after 72h on super-hydrophobic surfaces, and exhibited numerous surface microvilli with fluff-base polarity, while cells on smooth surfaces exhibited morphological characteristics of EMT. Expression levels of the α-SMA and vimentin were reduced on super-hydrophobic surfaces compared to smooth surfaces. Super-hydrophobic silicon inhibits proliferation, adhesion, and EMT of hLECs, properties that may prevent fibrosis following cataract surgery.


Asunto(s)
Diferenciación Celular/fisiología , Células Epiteliales/fisiología , Lentes Intraoculares , Elastómeros de Silicona , Línea Celular , Transición Epitelial-Mesenquimal , Humanos
3.
J Phys Chem B ; 125(26): 7290-7298, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34167305

RESUMEN

Superhydrophobic properties are derived from the roughness of the surface of micro/nanostructures and low-surface-energy materials. However, they are both easy to damage on superhydrophobic surfaces after mechanical abrasion in practical applications, resulting in the transition from the Cassie-Baxter state to the Wenzel state and even the loss of water repellency. In this work, the mechanical properties of polypropylene (PP) toughened with poly(ethylene-co-octene) (POE) were improved for the fabrication of long-lived T-shaped micropillars with submicron-villi on top by a combined method of compression molding and grinding. A universal testing machine was modified as equipment for the precise control of the traveling distance of specimens on sandpaper in precise. The PP/POE blend possessed high tensile strength of up to ∼23.84 MPa as well as elongation at break of ∼533.60%. The abrasive grains on sandpaper reshaped their surface morphologies from micropillars to T-shaped microstructures, on which the submicron-villi as secondary structures formed. The abraded microstructured PP/POE surface exhibited the highest contact angle of 154.4° and the most stable wetting state with a bouncing height of 7.68 mm (3.2 times the diameter of the 7-µL droplet) after a traveling distance of 1000 mm on 3000-grit sandpaper among the abraded and unabraded PP/POE surfaces.


Asunto(s)
Polipropilenos , Agua , Interacciones Hidrofóbicas e Hidrofílicas , Propiedades de Superficie , Humectabilidad
4.
Nan Fang Yi Ke Da Xue Xue Bao ; 33(2): 290-5, 2013 Feb.
Artículo en Zh | MEDLINE | ID: mdl-23443792

RESUMEN

OBJECTIVE: To investigate the influence of ozonated water on physical and chemical properties of vacuum sealing drainage (VSD) materials. METHODS: VSD materials (foam and sealing membrane) were immersed in 10 µg/ml ozonated water for 1 h twice daily for 8 days. The foam appearance and microscopic structure of the materials were observed, and tensile tests and Raman spectrum scan were performed assess the effect of ozonated water. Simulated VSD devices were prepared and tested for leakproofness under negative pressure after ozonated water treatment. RESULTS: zonated water treatment for 8 days caused no obvious abnormal changes in the foam appearance or microscopic structure of the materials. The maximum tensile load of foam before and after ozonated water treatment was 4.25∓0.73 kgf and 2.44∓0.19 kgf (P=0.000), the momentary distance when the foam torn before and after intervention was 92.54∓12.83 mm and 64.44∓4.60 mm, respectively (P=0.000). The corresponding results for VSD sealing membrane were 0.70∓0.58 kgf and 0.71∓0.08 kgf (P=0.698), and 99.30∓10.27 mm and 100.95∓18.22 mm (P=0.966), respectively. Raman spectroscopy revealed changes in only several wave intensities and no new chemical groups appeared within the scan range of 400-4000 cm(-1). The VSD device was well hermetic after treatment with ozonated water. CONCLUSION: Except for a decreased stretch resistance property of the foam, VSD materials display no obvious changes in physical and chemical characteristics after treatment with ozonated water for 8 days.


Asunto(s)
Materiales Biomédicos y Dentales/química , Drenaje/instrumentación , Ozono , Agua/química , Drenaje/métodos , Vacio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA