Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Biol Macromol ; 256(Pt 1): 127868, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37939758

RESUMEN

Achieving adhesion of hydrogels to universal materials with desirable strength remains a challenge despite emerging application of hydrogels. Herein we present a mussel foot protein (Mfp) inspired polyelectrolyte hydrogel of poly(ethylenimine)/poly(acrylic acid)-dopamine (PEI/PAADA) developed for universal tough adhesion. The highly-concentrated electrostatic and hydrogen-bonding interactions in PEI/PAADA hydrogel resulted in a tensile strength, strain at break, and toughness of 0.297 MPa, 2784 % and 5.440 MJ m-3, respectively. Moreover, the hydrogel can heal itself from physical damages, even can be recycled after totally dried via rehydration because of the high flexibility and reversibility of its dynamic bonds. Combining the strategies of topological stitching and direct bonding, Mfp-derived catechol and PEI/PAA backbone in PEI/PAADA corporately facilitated robust adhesion of universal materials with shear strength of up to 4.4 MPa and peeling strength of 870 J m-2, which is over 10 times greater than that of commercial fibrin gel. The adhesive also exhibited self-healing capability for at least 5 cycles, good stability in 1 M NaCl solution and characteristic debonding catalyzed by calcium. Moreover, in vitro cell behavior and in vivo wound healing assays suggested the potential of PEI/PAADA as wound dressing.


Asunto(s)
Bivalvos , Hidrogeles , Ácidos Polimetacrílicos , Animales , Hidrogeles/química , Proteínas/química , Adhesivos/química
2.
Adv Healthc Mater ; 13(5): e2301870, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38145973

RESUMEN

Bone adhesive is a promising candidate to revolutionize the clinical treatment of bone repairs. However, several drawbacks have limited its further clinical application, such as unreliable wet adhesive performance leading to fixation failure and poor biodegradability inhibiting bone tissue growth. By incorporating catechol groups and disulfide bonds into polyurethane (PU) molecules, an injectable and porous PU adhesive is developed with both superior wet adhesion and biodegradability to facilitate the reduction and fixation of comminuted fractures and the subsequent regeneration of bone tissue. The bone adhesive can be cured within a reasonable time acceptable to a surgeon, and then the wet bone adhesive strength is near 1.30 MPa in 1 h. Finally, the wet adhesive strength to the cortical bone will achieve about 1.70 MPa, which is also five times more than nonresorbable poly(methyl methacrylate) bone cement. Besides, the cell culture experiments also indicate that the adhesives show excellent biocompatibility and osteogenic ability in vitro. Especially, it can degrade in vivo gradually and promote fracture healing in the rabbit iliac fracture model. These results demonstrate that this ingenious bone adhesive exhibits great potential in the treatment of comminuted fractures, providing fresh insights into the development of clinically applicable bone adhesives.


Asunto(s)
Fracturas Conminutas , Adhesivos Tisulares , Animales , Conejos , Adhesivos/química , Poliuretanos/farmacología , Poliuretanos/química , Cementos para Huesos/química , Adhesivos Tisulares/química
3.
ACS Appl Mater Interfaces ; 15(51): 59826-59837, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38098133

RESUMEN

Universal adhesion of hydrogels to diverse materials is essential to their extensive applications. Unfortunately, tough adhesion of wet surfaces remains an urgent challenge so far, requiring robust cohesion strength for effective stress dissipation. In this work, a dual-network hydrogel polyethylenimine-poly(acrylic acid)/alginate (PEI-PAA/Alg) with excellent mechanical strength is realized via PEI-PAA complex and calcium alginate coordination for universal adhesion by the synergistic effort of topological entanglement and catechol chemistry. The dual networks of PEI-PAA/Alg provide mechanically reinforced cohesion strength, which is sufficient for energy dissipation during adhesion with universal materials. After the integration of mussel-inspired dopamine into PAA or Alg, the adhesive demonstrates further improved adhesion performance with a solid adherend and capability to bond cancellous bones. Notably, the dopamine-modified adhesive exhibits better instant adhesion and reversibility with wet surfaces compared with commercial fibrin. Adhesion interfaces are investigated by SEM and micro-FTIR to verify the effectiveness of strategies of topological entanglement. Furthermore, the adhesive also possesses great injectability, stability, tissue adhesion, and biocompatibility. In vivo wound healing and histological analysis indicate that the hydrogel can promote wound closure, epidermis regeneration, and tissue refunctionalization, implying its potential application for bioadhesive and wound dressing.


Asunto(s)
Adhesivos , Adhesivos Tisulares , Adhesivos/química , Hidrogeles/farmacología , Hidrogeles/química , Adhesivos Tisulares/farmacología , Adhesivos Tisulares/química , Dopamina , Catecoles/química , Alginatos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA