Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 339: 117961, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37075636

RESUMEN

Quorum quenching (QQ) has been demonstrated to be a novel technique for controlling biofouling in membrane bioreactors (MBRs), as it can significantly inhibit biofilm formation by disrupting quorum sensing (QS). The exploration of new QQ bacterial strains and the evaluation of their performance in mitigating membrane fouling in MBR systems is significant. In this study, an efficient QQ strain, Brucella sp. ZJ1 was encapsulated in alginate beads and evaluated for its ability to mitigate biofouling. The findings revealed that MBR with QQ beads extended the operation time by 2-3 times without affecting pollutant degradation. QQ beads maintained approximately 50% QQ activity after more than 50 days operation, indicating a long-lasting and endurable QQ effect. The QQ effect reduced extracellular polymeric substance (EPS) production especially in terms of polysaccharide and protein by more than 40%. QQ beads in the MBR also reduced the cake resistance and the irreversible resistance of membrane biofouling. Metagenomic sequencing suggests that QQ beads suppressed the QS effect and increased the abundance of QQ enzyme genes, ultimately inducing efficient membrane biofouling control.


Asunto(s)
Incrustaciones Biológicas , Brucella , Microbiota , Percepción de Quorum , Incrustaciones Biológicas/prevención & control , Matriz Extracelular de Sustancias Poliméricas , Reactores Biológicos/microbiología , Membranas Artificiales
2.
Sci Total Environ ; 855: 158912, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36162577

RESUMEN

Microbial electrolysis cell (MEC) has been existing problems such as poor applicability to real wastewater and lack of cost-effective electrode materials in the practical application of refractory wastewater. A hydrolysis-acidification combined MEC system (HAR-MECs) with four inexpensive stainless-steel and conventional carbon cloth cathodes for the treatment of real textile-dyeing wastewater, which was fully evaluated the technical feasibility in terms of parameter optimization, spectral analysis, succession and cooperative/competition effect of microbial. Results showed that the optimum performance was achieved with a 12 h hydraulic retention time (HRT) and an applied voltage of 0.7 V in the HAR-MEC system with a 100 µm aperture stainless-steel mesh cathode (SSM-100 µm), and the associated optimum BOD5/COD improvement efficiency (74.75 ± 4.32 %) and current density (5.94 ± 0.03 A·m-2) were increased by 30.36 % and 22.36 % compared to a conventional carbon cloth cathode. The optimal system had effective removal of refractory organics and produced small molecules by electrical stimulation. The HAR segment could greatly alleviate the imbalance between electron donors and electron acceptors in the real refractory wastewater and reduce the treatment difficulty of the MEC segment, while the MEC system improved wastewater biodegradability, amplified the positive and specific interactions between degraders, fermenters and electroactive bacteria due to the substrate complexity. The SSM-100 µm-based system constructed by phylogenetic molecular ecological network (pMEN) exhibited moderate complexity and significantly strong positive correlation between electroactive bacteria and fermenters. It is highly feasible to use HAR-MEC with inexpensive stainless-steel cathode for textile-dyeing wastewater treatment.


Asunto(s)
Fuentes de Energía Bioeléctrica , Purificación del Agua , Aguas Residuales/química , Acero Inoxidable , Hidrólisis , Filogenia , Electrólisis/métodos , Electrodos , Carbono/química , Bacterias , Textiles , Concentración de Iones de Hidrógeno
3.
Bioresour Technol ; 342: 125959, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34852439

RESUMEN

The large-scale application of the bioelectrochemical system (BES) is limited by the cost-effective electrode materials. In this study, five kinds of stainless-steel materials were used as the cathode of the BES coupled with anaerobic digestion (BES-AD) for the treatment of diluted N, N-dimethylacetamide (DMAC) wastewater. Compared with a carbon-cloth cathode, BES-AD with a stainless-steel cathode had more engineering due to its low cost, although the operating efficiencies were slightly inferior. Stainless-steel mesh with a 100 µm aperture (SSM-100 µm) was the most cost-effective electrode and the implanted BES exhibited better COD removal efficiency, electrochemical performance and biodegradability. Analysis of microbial community revealed the synergetic effect between exoelectrogen and fermentative bacteria had been strengthened in the SSM-100 µm cathode biofilm. Function analysis of the microbial community based on PICRUSt predicted metagenomes revealed that the metabolic pathways of xenobiotics biodegradation and metabolism in the SSM-100 µm cathode were stimulated.


Asunto(s)
Fuentes de Energía Bioeléctrica , Microbiota , Electrodos , Acero Inoxidable , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA