RESUMEN
The unique "Iron Addiction" feature of cancer stem cells (CSCs) with tumorigenicity and plasticity generally contributes to the tumor recurrence and metastasis after a lumpectomy. Herein, a novel "Ferroptosis Amplification" strategy is developed based on integrating gallic acid-modified FeOOH (GFP) and gallocyanine into Pluronic F-127 (F127) and carboxylated chitosan (CC)-based hydrogel for CSCs eradication. This "Ferroptosis Amplifier" hydrogel is thermally sensitive and achieves rapid gelation at the postsurgical wound in a breast tumor model. Specifically, gallocyanine, as the Dickkopf-1 (DKK1) inhibitor, can decrease the expression of SLC7A11 and GPX4 and synergistically induce ferroptosis of CSCs with GFP. Encouragingly, it is found that this combination suppresses the migratory and invasive capability of cancer cells via the downregulation of matrix metalloproteinase 7 (MMP7). The in vivo results further confirm that this "Ferroptosis Amplification" strategy is efficient in preventing tumor relapse and lung metastasis, manifesting an effective and promising postsurgical treatment for breast cancer.
Asunto(s)
Neoplasias de la Mama , Ferroptosis , Hidrogeles , Células Madre Neoplásicas , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Hidrogeles/química , Humanos , Animales , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Femenino , Ratones , Ferroptosis/efectos de los fármacos , Línea Celular Tumoral , Poloxámero/química , Poloxámero/farmacología , Quitosano/química , Quitosano/farmacología , Quitosano/análogos & derivados , Ácido Gálico/farmacología , Ácido Gálico/química , Ácido Gálico/uso terapéuticoRESUMEN
The impermeable barriers of solid tumors restrict the co-delivery of protein-based drugs and chemotherapeutics for cancer treatment. Therefore, we developed a ZIF-DOX/RA@DG nanosystem that encapsulates ribonuclease A (RA) and doxorubicin (DOX) in a zeolitic imidazolate framework (ZIF-8) core, with a dextran-based coating (DG). The nanosystem exhibits dual-responsiveness due to γ-glutamyl transpeptidase-activatable cationization and acidic microenvironment-triggered degradation. The DG-coating process was achieved using a microfluidic approach, which stabilized the polymer responsiveness, ZIF-8-based structure, and bioactivity of the encapsulated therapeutics. Inâ vivo results confirmed that the nanosystem could co-deliver RA and DOX to deep impermeable lesions with a synergistic anticancer therapeutic effects. Such a multi-drug delivery system based on an intelligent-responsive design and a microfluidics-assisted synthesis strategy shows great clinical prospects.
Asunto(s)
Neoplasias , Zeolitas , Doxorrubicina/química , Sistemas de Liberación de Medicamentos , Humanos , Concentración de Iones de Hidrógeno , Microfluídica , Neoplasias/tratamiento farmacológico , Polímeros/química , Microambiente TumoralRESUMEN
Inorganic nanocarriers have shown their high performance in disease theranostics in preclinical animal models and further great prospects for clinical translation. However, their dissatisfactory biodegradability and pre-drug leakage with nonspecificity to lesion sites significantly hinders the possible clinical translation. To solve these two critical issues, a framework-engineering strategy is introduced to simultaneously achieve enhanced biodegradability and controllable drug releasing, based on the mostly explored mesoporous silica-based nanosystems. The framework of mesoporous silica is engineered by direct Mg doping via a generic dissolution and regrowth approach, and it can transform into the easy biodegradation of magnesium silicate nanocarriers with simultaneous on-demand drug release. Such magnesium silicate nanocarriers can respond to the mild acidic environment of tumor tissue, causing the fast breaking up and biodegradation of the silica framework. More interesting, the released Mg2+ can further activate Mg2+ -dependent DNAzyme on the surface of hollow mesoporous magnesium silicate nanoparticles (HMMSNs) to cleave the RNA-based gatekeeper, which further accelerates the release of loaded anticancer drugs. Therefore, enhanced anticancer efficiency of chemotherapeutic drugs assisted by the biodegradable intelligent HMMSNs is achieved. The high biocompatibility of nanocarriers and biodegradation products is demonstrated and can be easily excreted via feces and urine guaranteeing their further clinical translation.
Asunto(s)
ADN Catalítico/metabolismo , Quimioterapia , Magnesio/química , Dióxido de Silicio/química , Animales , Antineoplásicos/farmacología , Tampones (Química) , Línea Celular Tumoral , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Concentración de Iones de Hidrógeno , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas/química , Nanopartículas/ultraestructura , Polietilenglicoles/química , Porosidad , SolucionesRESUMEN
Biodegradability of inorganic nanoparticles is one of the most critical issues in their further clinical translations. In this work, a novel "metal ion-doping" approach has been developed to endow inorganic mesoporous silica-based nanoparticles with tumor-sensitive biodegradation and theranostic functions, simply by topological transformation of mesoporous silica to metal-doped composite nanoformulations. "Manganese extraction" sensitive to tumor microenvironment was enabled in manganese-doped hollow mesoporous silica nanoparticles (designated as Mn-HMSNs) to fast promote the disintegration and biodegradation of Mn-HMSNs, further accelerating the breakage of Si-O-Si bonds within the framework. The fast biodegradation of Mn-HMSNs sensitive to mild acidic and reducing microenvironment of tumor resulted in much accelerated anticancer drug releasing and enhanced T1-weighted magnetic resonance imaging of tumor. A high tumor-inhibition effect was simultaneously achieved by anticancer drug delivery mediated by PEGylated Mn-HMSNs, and the high biocompatibility of composite nanosystems was systematically demonstrated in vivo. This is the first demonstration of biodegradable inorganic mesoporous nanosystems with specific biodegradation behavior sensitive to tumor microenvironment, which also provides a feasible approach to realize the on-demand biodegradation of inorganic nanomaterials simply by "metal ion-doping" strategy, paving the way to solve the critical low-biodegradation issue of inorganic drug carriers.
Asunto(s)
Manganeso/química , Nanopartículas/química , Neoplasias/diagnóstico por imagen , Animales , Antineoplásicos/química , Materiales Biocompatibles/química , Supervivencia Celular , Doxorrubicina/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Femenino , Células Hep G2 , Humanos , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Microscopía Electrónica de Transmisión , Nanoestructuras , Neoplasias/patología , Oxígeno/química , Silicio/química , Dióxido de Silicio/química , Nanomedicina Teranóstica , TermodinámicaRESUMEN
A novel multifunctional nanotheranostic agent with targeting, redox-responsive ultrasound imaging and ultrasound imaging-guided high-intensity focused ultrasound (HIFU) therapy (MSNC-PEG-HA(SS)-PFH, abbreviated as MPH(SS)-PFH) capabilities is developed. The redox-responsive guest molecule release and ultrasound imaging functions can be both integrated in such a "smart" theranostic agent, which is accomplished by the redox-triggered transition from the crosslinking state to retrocrosslinking state of the grafted polyethylene glycol-disulfide hyaluronic acid molecules on the particle surface when reaching a reducing environment in vitro. More importantly, under the tailored ultrasound imaging guiding, in vivo Hela tumor-bearing nude mice can be thoroughly and spatial-accurately ablated during HIFU therapy, due to the targeted accumulation, responsive ultrasound imaging guidance and the synergistic ablation functions of nanotheranostic agent MPH(SS)-PFH in the tumors. This novel multifunctional nano-platform can serve as a promising candidate for further studies on oncology therapy, due to its high stability, responsive and indicative ultrasound imaging of tumors, and enhanced HIFU therapeutic efficiency and spatial accuracy under ultrasound-guidance.
Asunto(s)
Diagnóstico por Imagen , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Polímeros/uso terapéutico , Adsorción , Animales , Células HeLa , Células Hep G2 , Humanos , Ratones Desnudos , Nanocápsulas/química , Nanocápsulas/ultraestructura , Oxidación-Reducción , Polímeros/síntesis química , Polímeros/química , Porosidad , Dióxido de Silicio/química , TemperaturaRESUMEN
Biocompatible inorganic material-based nanosystems provide a novel choice to effectively circumvent the intrinsic drawbacks of traditional organic materials in biomedical applications, especially in overcoming the multidrug resistance (MDR) of cancer cells due to their unique structural and compositional characteristics, for example, high stability, large surface area, tunable compositions, abundant physicochemical multifunctionalities, and specific biological behaviors. In this review, we focus on the recent developments in the construction of inorganic nanoparticles-based drug codelivery nanosystems (mesoporous SiO2, Fe3O4, Au, Ag, quantum dots, carbon nanotubes, graphene oxide, LDH, etc.) to efficiently circumvent the MDR of cancer cells, including the well-known codelivery of small molecular anticancer drug/macromolecular therapeutic gene and codelivery of small molecular chemosensitizer/anticancer drug, and very recently explored codelivery of targeting ligands/anticancer drug, codelivery of energy/anticancer drug, and codelivery of contrast agent for diagnostic imaging and anticancer drug. The unsolved issues, future developments, and potential clinical translations of these codelivery nanosystems are also discussed. These elaborately designed biocompatible inorganic materials-based nanosystems offer an unprecedented opportunity and show the encouraging bright future for overcoming the MDR of tumors in clinic personalized medicine and the pharmaceutical industry.
Asunto(s)
Portadores de Fármacos/química , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Compuestos Inorgánicos/química , Nanopartículas/química , Adsorción , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/uso terapéutico , Materiales Biocompatibles/química , Medios de Contraste/química , Humanos , Ligandos , Luz , Ratones , Microscopía Electrónica de Transmisión , Nanotubos de Carbono/química , Trasplante de Neoplasias , Medicina de Precisión/tendencias , Puntos Cuánticos , ARN Interferente Pequeño/metabolismoRESUMEN
Sonodynamic therapy (SDT) is a promising treatment modality for breast cancer; however, its effectiveness is often impeded by the hypoxic tumor microenvironment owing to an insufficient oxygen supply in the solid tumors. To overcome this challenge, we elaborately developed a 4T1 tumor-targeted multifunctional nanoagent by integrating both dendrimer-structured copper chelating agents and organic sonosensitizers (IR820) into a biotin-modified nanoliposome via a microfluidic-assisted self-assembly. In particular, the aforementioned copper chelating agent was constructed by introducing multiple xanthate groups into a dendrimer polymer, which showed a significant selectivity for the consumption of the intracellular copper levels. Based on this, the nanoliposome-based therapeutic not only disrupted the activity of the mitochondrial complex IV to directly inhibit the tumor cell proliferation but also suppressed the resistance to the SDT via inhibition of the oxygen consumption for cellular respiration. Both in vitro and in vivo studies confirmed that the designed nanoagents exhibit a synergistic tumor inhibition effect of copper consumption and IR820-mediated SDT. Taken together, this approach establishes a proof-of-concept for the construction of a copper-ion-modulated nanomedicine to significantly enhance the efficiency of oxygen-dependent cancer treatments.
Asunto(s)
Neoplasias de la Mama , Cobre , Terapia por Ultrasonido , Cobre/química , Cobre/farmacología , Femenino , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Neoplasias de la Mama/metabolismo , Ratones , Línea Celular Tumoral , Humanos , Ratones Endogámicos BALB C , Nanopartículas/química , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Dendrímeros/química , Dendrímeros/farmacología , Microambiente Tumoral/efectos de los fármacos , Liposomas/químicaRESUMEN
Transcatheter arterial embolization, a minimally invasive treatment to deliberately occlude the blood vessels, has become a safe and effective procedure for the management of vascular diseases and benign/malignant tumors. Particularly, hydrogel-based embolic agents have garnered much attention because of their potential to address some of the limitations of clinically used embolic agents and can be rationally designed to impart more favorable characteristics or functions. In this review, the recent progress toward the development of polymer-based hydrogels for effective endovascular embolization, including the in situ gelling hydrogels mediated by physically or chemically crosslinking, imageable hydrogels for intraprocedural and postprocedural feedback, use of hydrogels as the drug depot for local delivery of therapeutic drugs, hemostatic hydrogels inducing extrinsic or intrinsic coagulation of blood, stimuli-responsive shape memory hydrogels as the smart embolization devices, and hydrogels incorporating external-stimuli functional materials for multidisciplinary therapy, is systemically summarized. Moreover, the potential considerations of hydrogel-based embolic agents confronted in therapeutic embolization are pointed out. Finally, the perspectives for the development of more effective embolic hydrogels are also highlighted.
Asunto(s)
Embolización Terapéutica , Hidrogeles , Polímeros , Coagulación Sanguínea , Embolización Terapéutica/métodos , HemostasisRESUMEN
The ubiquitous mineralization of calcium phosphate (CaP) facilitates biological organisms to produce hierarchically structured minerals. The coordination number and strength of Ca2+ ions with phosphate species, oxygen-containing additives, and solvent molecules played a crucial role in tuning nucleation processes and the surface stability of CaP under the simulated body fluid (SBF) or aqueous solutions upon the addition of oligomeric lactic acid (LACn, n = 1, 8) and changing pH values. As revealed by ab initio molecular dynamics (AIMD), density functional theory (DFT), and molecular dynamics (MD) simulations as well as high-throughput experimentation (HTE), the binding of LAC molecules with Ca2+ ions and phosphate species could stabilize both the pre-nucleation clusters and brushite (DCPD, CaHPO4·2H2O) surface through intermolecular electrostatic and hydrogen bonding interactions. When the concentration of Ca2+ ions ([Ca2+]) is very low, the amount of the formed precipitation decreased with the addition of LAC based on UV-vis spectroscopic analysis due to the reduced chance for the LAC capped Ca2+ ions to coordinate with phosphates and the increased solubility in the acid solution. With the increasing [Ca2+] concentration, the kinetically stable DCPD precipitation was obtained with high Ca2+ coordination number and low surface energy. Morphologies of DCPD precipitation are in plate, needle, or rod, depending on the initial pH values that were tuned by adding NH3·H2O, HCl, or CH3COOH. The prepared samples at pH ≈ 7.4 with different Ca/P ratios exhibited negative zeta potential values, which were correlated with the surface electrostatic potential distributions and potential biological applications.
Asunto(s)
Materiales Biocompatibles/química , Fosfatos de Calcio/química , Teoría Funcional de la Densidad , Ácido Láctico/química , Simulación de Dinámica Molecular , Concentración de Iones de Hidrógeno , Ensayo de Materiales , Tamaño de la Partícula , Propiedades de SuperficieRESUMEN
For melanoma with high lethality and metastasis rate, traditional therapy has limited effects; local photothermal therapy (PTT) synergetic with immune therapy for cancer treatment can perhaps improve the situation. However, because of the natural existence of the tumor matrix barrier, the penetration depth of drugs and immune cells often dampens the efficacy of cancer treatment. Herein, we report an innovative synergetic PTT and immune therapy through dissolving microneedles for the codelivery of the hyaluronidase-modified semiconductor polymer nanoparticles containing poly(cyclopentadithiophene-alt-benzothiadiazole) and immune adjuvant polyinosinic-polycytidylic acid (PIC). Benefiting from the dissolution of an extracellular matrix of hyaluronidase, the semiconductor polymer nanoparticles and PIC penetrate the tumor deeply, under synergetic therapy with PTT, activating the immune cells and enhancing the T-cell immune response for inhibition of tumor growth and metastasis. This study provides a promising platform for effective melanoma treatment and a novel strategy to overcome the stromal barrier.
Asunto(s)
Matriz Extracelular/metabolismo , Hialuronoglucosaminidasa/metabolismo , Melanoma Experimental/terapia , Nanopartículas/administración & dosificación , Terapia Fototérmica , Polímeros/química , Linfocitos T/inmunología , Animales , Femenino , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Nanopartículas/química , AgujasRESUMEN
Much attention has been paid to the fabrication of two-dimensional (2D) nanomaterials as therapeutics for nanomedicine in recent years owing to their special physicochemical characteristics. These fascinating physicochemical properties alongside their diverse biomedical applications drive us to give a review of the present endeavors of interest in these 2D nanomaterials. In this review, the up-to-date research advances of the preparation, biocompatibility and biodegradation behaviors of 2D nanomaterials including transition-metal dichalcogenides (TMDs), transition metal oxides (TMOs), black phosphorus (BP) nanosheets, metal-organic frameworks (MOFs), 2D boron (B), boron nitride (BN), layered double hydroxides (LDHs), 2D nanoscale metals, and other kinds of 2D nanomaterials are introduced. The in vitro and in vivo bio-compatibility, including their degradation assessments from the aspects of a redox reaction, enzymes, pH, and the cell environment, etc., of the above categories of 2D nanomaterials are discussed in detail. Finally, the prospects and challenges of the development of 2D nanomaterials aiming for biomedical applications are summarized.
Asunto(s)
Materiales Biocompatibles/metabolismo , Grafito/metabolismo , Nanoestructuras/química , Animales , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Grafito/síntesis química , Grafito/química , Humanos , Tamaño de la Partícula , Propiedades de SuperficieRESUMEN
Novel amino- or thiol-functionalized superparamagnetic copolymer-silica nanospheres (NH2-SMCSNs/SH-SMCSNs), which consist of a magnetic core and a silica cross-linked block copolymer shell, have been fabricated.
Asunto(s)
Magnetismo , Polímeros/química , Dióxido de Silicio/química , Microscopía Electrónica de Rastreo , Microscopía Electrónica de TransmisiónRESUMEN
As a highly biocompatible NIR dye, indocyanine green (ICG) has been widely explored for cancer treatment due to its various energy level transition pathways upon NIR light excitation simultaneously, which leads to different theranostic effects (eg. Photoacoustic (PA) and fluorescence imaging (FL), photodynamic and photothermal therapy (PDT&PTT)). However, the theranostic efficiency of ICG is restricted intrinsically, owing to the competitive relationship of its co-existing imaging and therapeutic effect. Moreover, the extrinsic hypoxia nature of tumor further limits its therapeutic effect, especially for the oxygen-dependent PDT. Herein, perfluorooctyl bromide (PFOB), another biocompatible chemical, was integrated with ICG in a nanoliposome structure via a facile two-step emulsion method. Such an ICG&PFOB co-loaded nanoliposomes (LIP-PFOB-ICG) realized computed tomography (CT) contrast imaging in vivo, providing better anatomical information of tumor in comparison to ICG enabled PA and FL imaging. More importantly, LIP-PFOB-ICG inhibited MDA-MB-231 tumor growth completely via intravenous injection through enhanced PDT&PTT synergistic therapy due to the excellent oxygen carrying ability of PFOB, which effectively attenuated tumor hypoxia, improved the efficiency of collisional energy transfer between ICG and oxygen and reduced the expression of heat shock protein (HSP). As expected, the introduction of PFOB within nanoliposomes with ICG has augmented the theranostic effect of ICG comprehensively, which makes this simple biocompatible liposome-based nanoagent a potential candidate for clinical imaging guided phototherapy of cancer.
Asunto(s)
Fluorocarburos , Verde de Indocianina , Liposomas , Imagen Multimodal , Nanopartículas , Fotoquimioterapia , Animales , Línea Celular Tumoral , Medios de Contraste/administración & dosificación , Medios de Contraste/química , Fluorocarburos/administración & dosificación , Fluorocarburos/química , Humanos , Hidrocarburos Bromados , Verde de Indocianina/administración & dosificación , Verde de Indocianina/química , Liposomas/química , Ratones Endogámicos BALB C , Imagen Multimodal/métodos , Nanopartículas/química , Oxígeno/metabolismo , Fotoquimioterapia/métodos , Hipoxia TumoralRESUMEN
The development of efficient strategies for the magnetic hyperthermia ablation of tumors remains challenging. To overcome the significant safety limitations, we developed a thermally contractible, injectable and biodegradable material for the minimally invasive and highly efficient magnetic hyperthermia ablation of tumors. This material was composed of hydroxypropyl methyl cellulose (HPMC), polyvinyl alcohol (PVA) and Fe3O4. The thermal contractibility of HPMC/Fe3O4 was designed to avoid damaging the surrounding normal tissue upon heating, which was confirmed by visual inspection, ultrasound imaging and computed tomography (CT). The efficient injectability of HPMC/Fe3O4 was proven using a very small needle. The biosafety of HPMC/Fe3O4 was evaluated by MTT and biochemical assays as well as flow cytometry (FCM). All the aforementioned data demonstrated the safety of HPMC/Fe3O4. The results of in vitro and ex vivo experiments showed that the temperature and necrotic volume of excised bovine liver were positively correlated with the HPMC/Fe3O4 weight, iron content and heating duration. The in vivo experimental results showed that the tumors could be completely ablated using 0.06 ml of HPMC/60%Fe3O4 after 180 s of induction heating. We believe that this novel, safe and biodegradable material will promote the rapid bench-to-bed translation of magnetic hyperthermia technology, and it is also expected to bring a new concept for the biomaterial research field.
Asunto(s)
Compuestos Férricos/química , Hipertermia Inducida , Derivados de la Hipromelosa/química , Inyecciones , Fenómenos Magnéticos , Neoplasias/terapia , Temperatura , Animales , Bovinos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Compuestos Férricos/toxicidad , Humanos , Derivados de la Hipromelosa/síntesis química , Derivados de la Hipromelosa/toxicidad , Hígado/patología , Ratones DesnudosRESUMEN
Lowering power output and radiation time during radiofrequency (RF) ablation is still a challenge. Although it is documented that metal-based magnetothermal conversion and microbubbles-based inertial cavitation have been tried to overcome above issues, disputed toxicity and poor magnetothermal conversion efficiency for metal-based nanoparticles and violent but transient cavitation for microbubbles are inappropriate for enhancing RF ablation. In this report, a strategy, i.e., continuous cavitation, has been proposed, and solid menthol-encapsulated poly lactide-glycolide acid (PLGA) nanocapsules have been constructed, as a proof of concept, to validate the role of such a continuous cavitation principle in continuously enhancing RF ablation. The synthesized PLGA-based nanocapsules can respond to RF to generate menthol bubbles via distinctive radiofrequency solidoid vaporization (RSV) process, meanwhile significantly enhance ultrasound imaging for HeLa solid tumor, and further facilitate RF ablation via the continuous cavitation, as systematically demonstrated both in vitro and in vivo. Importantly, this RSV strategy can overcome drawbacks and limitations of acoustic droplet vaporization (ADV) and optical droplet vaporization (ODV), and will probably find broad applications in further cancer theranostics.
Asunto(s)
Técnicas de Ablación/métodos , Microburbujas/uso terapéutico , Tratamiento de Radiofrecuencia Pulsada/métodos , Animales , Línea Celular , Células HeLa , Humanos , Ácido Láctico/química , Mentol/química , Ratones , Ratones Desnudos , Nanocápsulas/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , PorcinosRESUMEN
Despite gaining increasing attention, chelation of multiple active targeting ligands greatly increase the formation probability of protein corona, disabling active targeting. To overcome it, a synergistic retention strategy of RGD-mediated active targeting and radiofrequency (RF) electromagnetic field-enhanced permeability has been proposed here. It is validated that such a special synergistic retention strategy can promote more poly lactic-co-glycolic acid (PLGA)-based capsules encapsulating camptothecin (CPT) and solid DL-menthol (DLM) to enter and retain in tumor in vitro and in vivo upon exposure to RF irradiation, receiving an above 8 fold enhancement in HeLa retention. Moreover, the PLGA-based capsules can respond RF field to trigger the entrapped DLM to generate solid-liquid-gas (SLG) tri-phase transformation for enhancing RF ablation and CPT release. Therefore, depending on the enhanced RF ablation and released CPT and the validated synergistic retention effect, the inhibitory outcome for tumor growth has gained an over 10-fold improvement, realizing RF ablation & chemotherapy synergistic treatment against HeLa solid tumor, which indicates a significant promise in clinical RF ablation.
Asunto(s)
Antineoplásicos/farmacología , Oligopéptidos/química , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Camptotecina/química , Camptotecina/farmacología , Camptotecina/uso terapéutico , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Terapia Combinada , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Colorantes Fluorescentes/química , Células HeLa , Humanos , Ácido Láctico/química , Mentol/farmacología , Mentol/uso terapéutico , Ratones Desnudos , Trasplante de Neoplasias , Permeabilidad , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Tratamiento de Radiofrecuencia Pulsada , Ratas , Propiedades de SuperficieRESUMEN
Magnetic hyperthermia ablation is a new and minimally invasive modality for localized tumor removal. However, an inadequate ablation dosage can leave a residual tumor or cause a variety of complications. In addition, commonly used magnetic nanoparticles can easily escape from the tumor tissue, which present potential safety problems. In this study, a smart phase transitional and injectable implant based on biocompatible poly lactic-co-glycolic acid (PLGA) implant incorporating magnetic material (Fe powder) and anti-cancer drug (doxorubicin (DOX)) was developed. The magnetic-induced hyperthermia and release efficiency of DOX were evaluated in vitro. Drug release can be controlled under external alternating current magnetic field (AMF). The results of the in vivo tumor therapeutic efficacy showed that when exposed to external AMF, this smart injectable DOX/PLGA-Fe implant could converse magnetic energy into heat and accelerate the release of DOX, which leads to increasing the temperature to achieve tumor coagulative necrosis and accelerating the release of DOX to enhance residual tumor apoptosis. Furthermore, there was no leakage of magnetic material, as demonstrated using real-time ultrasound (US) and computerized tomography (CT) imaging, realizing the guidance and monitoring of tumor therapy. In conclusion, this smart phase transitional and injectable implant DOX/PLGA-Fe has the ability to improve the efficiency of this newly developed minimally invasive magnetic ablation of tumor treatment technique, and will provide a new avenue of developing minimally invasive synergistic tumor therapy.
Asunto(s)
Doxorrubicina , Implantes de Medicamentos , Hipertermia Inducida , Hierro , Ácido Láctico , Campos Magnéticos , Neoplasias Experimentales/terapia , Ácido Poliglicólico , Animales , Bovinos , Línea Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Implantes de Medicamentos/química , Implantes de Medicamentos/farmacocinética , Implantes de Medicamentos/farmacología , Humanos , Hierro/química , Hierro/farmacocinética , Hierro/farmacología , Ácido Láctico/química , Ácido Láctico/farmacocinética , Ácido Láctico/farmacología , Ratones , Ácido Poliglicólico/química , Ácido Poliglicólico/farmacocinética , Ácido Poliglicólico/farmacología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Two-dimensional transition metal dichalcogenides, particularly MoS2 nanosheets, have been deemed as a novel category of NIR photothermal transducing agent. Herein, an efficient and versatile one-pot solvothermal synthesis based on "bottom-up" strategy has been, for the first time, proposed for the controlled synthesis of PEGylated MoS2 nanosheets by using a novel "integrated" precursor containing both Mo and S elements. This facile but unique PEG-mediated solvothermal procedure endowed MoS2 nanosheets with controlled size, increased crystallinity and excellent colloidal stability. The photothermal performance of nanosheets was optimized via modulating the particulate size and surface PEGylation. PEGylated MoS2 nanosheets with desired photothermal conversion performance and excellent colloidal and photothermal stability were further utilized for highly efficient photothermal therapy of cancer in a tumor-bearing mouse xenograft. Without showing observable in vitro and in vivo hemolysis, coagulation and toxicity, the optimized MoS2-PEG nanosheets showed promising in vitro and in vivo anti-cancer efficacy.
Asunto(s)
Disulfuros/química , Molibdeno/química , Nanoestructuras/química , Fototerapia/métodos , Polietilenglicoles/química , Animales , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica de Transmisión , Propiedades de SuperficieRESUMEN
Despite great efforts having been devoted to the design of multimodal imaging probe, almost all design principles of nanotheranostic agents subordinate to simple assemblies of building blocks, resulting in complex preparation process and discounted ability, that is, 1 + 1 < 2. In this report, a novel design strategy, marriage of structure design and composition design that can maximize imaging ability of each building block, ultimately achieving 1 + 1 ≥ 2, has been established. Moreover, a high-efficient ultrasound (US) & MR & CT trimodal contrast agent acts as model to instantiate this design strategy, wherein nanoparticles-induced nonlinear scattering and rattle-type structure-induced double scattering enhancing US imaging, and uniform distribution of Mn(2+) paramagentic centers and "core-satellite" structure of Au atoms favoring enhanced MR imaging and CT imaging, respectively have been validated, achieving optimization of structure design. Importantly, the selected components, silica, Au and MnO are endowed with excellent biocompatibility, displaying the marriage strategy of composition design with aforementioned structure optimization. In in vivo evaluations, such a biocompatible trimodal probe is demonstrated of excellent performance in intensifying CT, MR and US imaging in vivo, especially after positively charged modification by PEI promoting more probes retained in tumor. More importantly, as a universal design strategy, the involved principles in constructing such a US&MR&CT trimodal imaging probe promise great potentials in guiding designs of other materials-based multimodal imaging probe.
Asunto(s)
Medios de Contraste/química , Imagen por Resonancia Magnética , Neoplasias/diagnóstico , Tomografía Computarizada por Rayos X , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacocinética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Medios de Contraste/farmacocinética , Oro/química , Compuestos de Manganeso/química , Nanopartículas/química , Nanopartículas/metabolismo , Nanopartículas/toxicidad , Óxidos/química , Conejos , Dióxido de Silicio/química , Distribución Tisular , Trasplante HeterólogoRESUMEN
MoS2 nanosheets and a doxorubicin (DOX)-containing poly (lactic-co-glycolic acid) (PLGA)/MoS2 /DOX composite implant are successfully constructed based on the unique phase-changing behavior of PLGA/MoS2 /DOX oleosol within tumors. The fast phase transformation can firmly restrict MoS2 and DOX within tumors, and the integrated MoS2 and DOX can endow the implant with high synergistic photothermal and chemotherapeutic efficiency against tumors.