Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mikrochim Acta ; 188(3): 79, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33569651

RESUMEN

Timolol accompanied the formation of fluorescent ß-ketoenamine-linked covalent organic frameworks (COFs) via the Sc(Tof)3-catalyzed condensation of derivated carbaldehyde and hydrazide in a 1,4-dioxane/mesitylene porogen to construct timolol-imprinted COFs (TICOFs). With high imprinting factors, the synthesis-optimized TICOFs were characterized by fluorescence, UV-Vis spectrometry, X-ray diffraction, N2 adsorption/desorption analyses, scanning electron microscopy, and FTIR spectrometry. The TICOF fluorescence measured at 390 nm/510 nm is dynamically quenched by timolol and was thus utilized to quantify timolol in a linear range of 25-500 nM with a LOD of 8 nM. The TICOF recovered 99.4% of 0.5% timolol maleate in a commercial eye drop (RSD = 1.1%, n = 5). In addition, TICOF was used as a dispersive sorbent to recover 95% of 2.0 nM timolol from 20 mg of TICOF in 25 mL phosphate buffer. Dilution factors of 25 and 75 were the maximum tolerated proportions of the urine and serum matrix spiked with 2.0 nM timolol to reach recoveries of 92.4% and 90.3%, respectively.


Asunto(s)
Antagonistas Adrenérgicos beta/análisis , Colorantes Fluorescentes/química , Estructuras Metalorgánicas/química , Polímeros Impresos Molecularmente/química , Timolol/análisis , Antagonistas Adrenérgicos beta/sangre , Antagonistas Adrenérgicos beta/química , Antagonistas Adrenérgicos beta/orina , Adsorción , Colorantes Fluorescentes/síntesis química , Humanos , Límite de Detección , Estructuras Metalorgánicas/síntesis química , Polímeros Impresos Molecularmente/síntesis química , Soluciones Oftálmicas/análisis , Extracción en Fase Sólida/métodos , Espectrometría de Fluorescencia/métodos , Timolol/sangre , Timolol/química , Timolol/orina
2.
Sensors (Basel) ; 20(9)2020 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-32397682

RESUMEN

Composites of tetracycline (Tc)-imprinted polymethacrylates and quantum dots have been coated on chemically pretreated polyimide substrates (PIs) as fluorescent sensors. In this study, PIs were pretreated by capacitively coupled plasma (CCP) before coating the same composites on them. For the first time, to fabricate sensors by plasma modification of PIs, the CCP conditions, including plasma gas, flow rate, radio frequency generation power, and duration time, the fabrication details, including coating, baking, and stripping steps, and the sample loading process were optimized to perform a linear decrease in fluorescent intensity with Tc concentrations in the range of 5.0-3000 µM (R2 = 0.9995) with a limit of detection of 0.2 µM (S/N = 3, relative standard deviation (RSD) = 2.2%). The selectivity of the stripped PIs was evaluated by the imprinting factors (IFs) for Tc (IF = 7.2), other Tc analogues (IF = 3.4-5.3), and steroids (IF ≈ 1) and by the recoveries of 5.0 µM Tc from bovine serum albumin at 300 µg∙mL-1 (98%, RSD = 3.2%), fetal bovine serum at 1.5 ppt (98%, RSD = 2.8%), and liquid milk (94.5%, RSD = 5.3%). The superiority of the present plasma-treated-based sensor over the previous chemically-treated one in fabrication efficiency and detection effectiveness was clear.


Asunto(s)
Impresión Molecular , Puntos Cuánticos , Tetraciclina , Animales , Límite de Detección , Plasma , Polímeros
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 291: 122383, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36682253

RESUMEN

The discovery of a series of coupling reactions between various building blocks has driven the development of porous organic polymers, but the common usage of expensive and air-sensitive organometallic catalysts and complex procedures in harsh syntheses has limited their expansion. A microporous hypercrosslinked polymer (HCP) was synthesized by polymerizing a naphthalene monomer and a 1,4-dimethoxybenzene crosslinker using Friedel-Crafts alkylation over an FeCl3 catalyst and imprinted with 3,5-dinitrosalicylic acid (DNS). The DNS-molecularly-imprinted HCPs (MIHCPs) were characterized as having IUPAC Type I mesoporosity, a specific surface area of 1134 m2 g-1, a monolayer adsorption capacity of 116 cm2 g-1, pore sizes ranging from 5 to 8.5 Å, amorphous frameworks, and distinctive absorption and emission bands by N2 adsorption/desorption analyses, scanning and transmission electron microscopies, and FTIR, UV-Vis, and fluorescence spectrometries. The π-conjugated imprinted framework endowed the MIHCPs with 405-nm fluorescent emission at a 330-nm excitation and dynamic quenching, which was confirmed by changes in fluorescence lifetime and followed a linear Stern-Volmer plot against 1.0-200 µM DNS template molecules under optimized conditions of a pH 7.0 buffer, an MIHCP concentration of 125 µg mL-1, and a 3.0-min equilibration time. The MIHCPs exhibited a high imprinted factor of 8.7 against nonimprinted HCP and a selectivity of 8.63 against reduced DNS, which enabled fluorometric detection of DNS molecules produced by the hydrolysis of starch with microbial, salivary, and pancreatic α-amylases and the subsequent redox incubation with the DNS oxidant. The fluorometric measurement of α-amylase activity was higher in accuracy and precision (RSD: 2.6-2.8% vs. 3.9-4.0%) than conventional UV-Vis spectrometry because the excellent fluorescent sensitivity and imprinting selectivity of the MIHCP probes enabled the use of higher dilution factors with weaker matrix effects.


Asunto(s)
Impresión Molecular , Polímeros , Polímeros/química , Impresión Molecular/métodos , Espectrometría de Fluorescencia/métodos , Colorantes , alfa-Amilasas , Adsorción
4.
J Hazard Mater ; 426: 128116, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34968842

RESUMEN

Areca nut and tobacco are frequently used in combination. Cigarette smoking and betel quid (BQ) chewing habits impose greater oral cancer risk than either habit alone. Saliva is a better noninvasive diagnostic material as it is in direct contact with oral mucosa and cancerous lesions. This study describes the application of isotope-dilution LC-MS/MS for simultaneous quantitation of five areca nut-specific alkaloids (ASAs) and three tobacco-specific alkaloids (TSAs) in human saliva. With this method, we demonstrate that the distribution of ASAs vary significantly in smokers who chew BQ habitually, due to the hydrolysis of ASAs and metabolic activity in the oral cavity. The alkaline condition formed due to slaked lime in BQ, plays an important role in the distribution of ASAs and TSAs, by catalyzing the hydrolysis of ester forms of ASAs to their respective carboxylic acid forms besides facilitating the TSA (i.e., nicotine) absorption in the oral cavity. Moreover, our results reveal that oral mucosa rather than saliva contributes to the metabolism of ASAs at oral cavity. Less than 2.1% of ASAs were metabolized by saliva, as determined by in vitro test. Our findings may provide a better insight into the pathobiology of oral carcinogenesis due to BQ chewing.


Asunto(s)
Alcaloides , Areca , Areca/efectos adversos , Cromatografía Liquida , Humanos , Boca , Nueces , Saliva , Espectrometría de Masas en Tándem , Nicotiana
5.
Electrophoresis ; 32(3-4): 398-407, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21298667

RESUMEN

Nanoparticles exhibiting favorable surface-to-volume ratios create efficient stationary phases for electrochromatography. New nanomaterials derived from chitosan (CS) were immobilized onto modified capillaries for use as the chiral stationary phase (CSP) in open-tubular electrochromatography. This immobilization was achieved through the copolymerization of glycidyl methacrylate-modified nano-CS with methacrylamide (MAA) and bis-acrylamide crosslinkers (forming the MAA-CS capillary) rather than the attachment of nano-CS to the copolymer of glycidyl methacrylate, MAA, and bis-acrylamide (forming the MAA+CS capillary). The completed MAA-CS capillary and its precursors were examined by SEM and ATR-IR measurements. Before separating chiral samples, the MAA-CS capillary was characterized by electroosmotic flow measurements at varying pH values, concentrations, and volume percentages of organic modifiers in the running buffers. Tryptophan enantiomers were well separated by the MAA-CS capillary, whereas no enantioselectivity was observed in the MAA+CS capillary. With the addition of 80% MeOH into the phosphate buffer, the chiral separation of (±)-catechin was accomplished in a normal-phase mode. However, the new CSP has its limitations, as only two groups of α-tocopherol stereoisomers were separated.


Asunto(s)
Acrilamidas/química , Electrocromatografía Capilar/métodos , Quitosano/química , Microscopía Electrónica de Rastreo/métodos , Nanopartículas/química , Resinas Acrílicas/química , Catequina/análisis , Electroósmosis/métodos , Nanotecnología , Triptófano/análisis , alfa-Tocoferol/análisis
6.
Electrophoresis ; 31(23-24): 3937-48, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21077219

RESUMEN

A new nanoparticle-bound polymer stationary phase was prepared by in situ polymerization of methacrylamide (MAA), bis-acrylamide crosslinker, and carboxylated multi-walled carbon nanotubes (multi-walled CNTs; MWNTs), using the abundant double bonds in the cyclopentadienyl rings in MWNT structure, on a silanized capillary. Each intermediate capillary between the synthesis steps was characterized by SEM, by ATR-IR, and by EOF measurements varying the pH, concentration, and volumetric ratios of ACN in running buffers. The resulting EOF profile was comparable to those of two other capillaries with different phase matrices, silica hydride and polybutyl methacrylate (BMA) phases. With the complex functionality of MWNTs on the hydrophilic polyacrylamide network, the MAA-CNT capillary was capable of separating diverse samples with a wide range of polarity and dissociation properties using open-tubular CEC. Besides optimizing CEC conditions, the migration times of samples were analyzed with respect to velocity and retention factors to evaluate electrophoretic and chromatographic contributions to the CEC mechanism. The migration rates of benzoic acids were determined by the electrophoretic mobilities of the various phenolate ions, while phenolic aldehydes and ketones were additionally influenced by chromatographic interactions, such as π-π, electrostatic effects, hydrogen bonding, and hydrophobic interactions. The retention factors were greater for flavonoids, which are polyphenolic, than for simple phenols, but were smaller than those obtained from the hydrophobic BMA-CNT column. A complete well-resolved separation of the cationic forms of tetracyclines was acheived either by electrophoresis or by chromatography in the MAA-CNT capillary, but not in the BMA-CNT and silica hydride-CNT capillaries.


Asunto(s)
Resinas Acrílicas/química , Electrocromatografía Capilar/métodos , Nanotubos de Carbono/química , Silicatos/química , Benzoatos/análisis , Benzoatos/aislamiento & purificación , Electroósmosis , Flavonoides/análisis , Flavonoides/aislamiento & purificación , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía Electrónica de Rastreo , Espectrofotometría Infrarroja , Tetraciclinas/análisis , Tetraciclinas/aislamiento & purificación
7.
Electrophoresis ; 31(19): 3217-26, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22216433

RESUMEN

A new phase containing immobilized carbon nanotubes (CNTs) was synthesized by in situ polymerization of acid-treated multi-walled CNTs using butylmethacrylate (BMA) as the monomer and ethylene dimethacrylate as the crosslinker on a silanized capillary, forming a porous-layered open-tubular column for CEC. Incorporation of CNT nanomaterials into a polymer matrix could increase the phase ratio and take advantage of the easy preparation of an OT-CEC column. The completed BMA-CNT column was characterized by SEM, ATR-IR, and EOF measurements, varying the pH and the added volume organic modifier. In the multi-walled CNTs structure, carboxylate groups were the major ionizable ligands on the phase surface exerting the EOF having electroosmotic mobility, 4.0 × 10(4) cm2 V(-1)1 S(-1)1, in the phosphate buffer at pH 2.8 and RSD values (n=5), 3.2, 4.1, and 4.3%, for three replicate capillaries at pH 7.6. Application of the BMA-CNT column in CEC separations of various samples, including nucleobases, nucleosides, flavonoids, and phenolic acids, proved satisfactory upon optimization of the running buffers. Their optima were found in the borate buffers at pH 9.0/50 mM, pH 9.5/10 mM/50% v/v ACN, and pH 9.5/30 mM/10% v/v methanol, respectively. The separations could also be used to assess the relative contributions of electrophoresis and chromatography to the CEC mechanism by calculating the corresponding velocity and retention factors. Discussions about interactions between the probe solutes and the bonded phase included the π-π interactions, electrostatic repulsion, and hydrogen bonding. Furthermore, a reversed-phase mode was discovered to be involved in the chromatographic retention.


Asunto(s)
Electrocromatografía Capilar/instrumentación , Nanotubos de Carbono/química , Ácidos Polimetacrílicos/química , Acetonitrilos , Electroósmosis , Flavonoides/aislamiento & purificación , Concentración de Iones de Hidrógeno , Hidroxibenzoatos/aislamiento & purificación , Metanol , Microscopía Electrónica de Rastreo , Porosidad , Espectrofotometría Infrarroja
8.
Talanta ; 85(5): 2330-8, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21962650

RESUMEN

The chiral selector, chitosan (CS), was attached to the silanized capillary via a silane coupling agent, (3-glycidyloxypropyl)trimethoxysilane (GTS), to form the GTS-CS capillary, and results for this capillary were compared with those of a previous study on the copolymerization of CS with methacrylamide (MAA) (forming the MAA-CS capillary). The GTS-CS capillary did not exhibit enantioselectivity for d/l-tryptophan, whereas the GTS-BSA capillary, which was prepared by replacement of CS with bovine serum albumin (BSA), succeeded in the chiral separation with an Rs=2.4 in Tris buffer (50mM, pH 8.5). To increase CS attachment, the CS units were crosslinked by succinic acid, and the resulting GTS-CS-s capillary phase improved the resolution to 1.9. Alternatively, the SiH-CS-s capillary was constructed by CS attachment on the silicon hydride phase via stepwise silanization and hydrosilation reactions and crosslinking by succinic acid, but this approach could only achieve a resolution of 1.4 in Tris buffer (50mM, pH 9.5). Although the GTS-CS-s and SiH-CS-s capillaries were still inferior to the MAA-CS capillary (Rs=3.8), the enantioselectivities of the three capillaries were all in the range of 1.4-1.6. For the (±)-catechin sample, the plate heights of the GTS-CS-s and SiH-CS-s capillaries conditioned in pH 8.5 Tris buffer with 60% MeOH modifier were 0.9 cm ((-)-catechin) and 6.0 cm ((+)-catechin)) and 2.9 cm (-) and 3.2 cm (+), respectively, and these heights were comparable to the MAA-CS capillary (2.5 cm (-), 6.0 cm (+)) in pH 6.6 phosphate buffer with 80% MeOH. Finally, a racemate of ibuprofen, a weakly acidic anti-inflammatory drug, was successfully baseline resolved by the GTS-CS-s and SiH-CS-s capillaries in the borate buffers, which were 30 mM at pH 7.5 and 10mM at pH 8.0, respectively.


Asunto(s)
Resinas Acrílicas/química , Quitosano/química , Cromatografía Capilar Electrocinética Micelar/métodos , Nanopartículas , Catequina/química , Estereoisomerismo , Triptófano/química
9.
J Chromatogr A ; 1217(26): 4328-36, 2010 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-20452600

RESUMEN

A polymer phase, which was constructed with butyl methacrylate (BMA), an ionizable monomer (mono-(2-(methacryloyloxy)ethyl) succinate (MES)), and a crosslinking agent (ethylene dimethacrylate), was first formed in a porous-layered open-tubular (PLOT) capillary. The PLOT capillary was characterized with SEM and electrophoretic flow as the pH level, ionic strength and addition of organic modifiers in the running buffers changed. In addition, a bare capillary and a silica hydride based capillary (SiH-MES), which bore a monolayered MES phase on it, were used to compared with the BMA-MES capillary. Besides optimizing the capillary electrochromatographic (CEC) conditions for each group of analytes, which were a mixture of nucleosides and thymine, flavonoids, and phenolic acids,comparison of the separation selectivity among analytes between the BMA-MES and SiH-MES capillaries was done according to the velocity and retention factors obtained from the CEC data. Overall, the polymeric phase formed in the PLOT mode was capable of preventing blockage of the columns and was superior to the monolayered phase bonding with the same ionizable ligands for application in CEC as well as to the bare silica phase in CE.


Asunto(s)
Electrocromatografía Capilar/instrumentación , Metacrilatos/química , Polímeros/química , Silicatos/química , Electrocromatografía Capilar/métodos , Nucleósidos/análisis , Porosidad , Timina/análisis
10.
Anal Sci ; 26(5): 561-7, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20467131

RESUMEN

Humic substances (HS) from well waters, fertilizers, and synthetic phenolic polymers were characterized by elemental and UV-VIS spectroscopic analyses. Capillary zone electrophoresis (CZE) with UV absorption detection was used to analyze the lignin-derived phenolic distribution in the degradation residues after alkaline CuO oxidation of HS samples. Eleven phenols with p-acetyl, vanillyl and syringyl substituents were selected to optimize the CZE parameters. For well waters and fertilizers, the content of phenolic fragments was in agreement with the findings of the elemental and spectroscopic measurements. Additionally, parameters derived from the vanillic acid/vanilline, syringyl acid/syringaldehyde, p-hydroxyl/vanillyl and syringyl/vanillyl ratios matched analogous studies on dissolved organic matter from natural waters and on humic acids from terrestrial substances. The amount of phenolic monomer bonded within two synthetic HS polymers was found to be 25.9% protocatechuic acid and 71.3% gallic acid.


Asunto(s)
Fertilizantes/análisis , Sustancias Húmicas/análisis , Fenoles/análisis , Polímeros/análisis , Abastecimiento de Agua/análisis , Absorción , Benzaldehídos/análisis , Cobre/química , Electroforesis Capilar , Ácido Gálico/análisis , Hidroxibenzoatos/análisis , Oxidación-Reducción , Polímeros/síntesis química , Reproducibilidad de los Resultados , Espectrofotometría Ultravioleta , Factores de Tiempo , Ácido Vanílico/análisis
11.
Electrophoresis ; 27(4): 729-35, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16411276

RESUMEN

A synthetic coppermesogenic polymer is prepared and then covalently bonded to the siloxane-based deactivated column as the stationary phases of open-tubular CEC with essentially high phase ratio. The EOF generated from the modified phase is surveyed through conventional aqueous buffers and hydroorganic mobile phases. Zeta potentials, which are computed from the EOF data and the ratio of dielectric constant to viscosity, are plotted as a function of pH, ionic molarity, and compositional range. These plots responsible for the electroosmotic characteristic of the bonded phases are found to be like those of bare fused-silica or deactivated columns through decreasing or increasing the ACN content in the mobile phase, respectively. This two-phase characteristic is basically derived from the polymeric configuration with carboxylato ligands attached onto the polysiloxane backbone. Phthalates and amino acids are suitable probes to examine the two phenomena, more-polar and less-polar mediums, respectively, and to judge whether the chromatographic retention is the major source of separation mechanism. With the mixing modes of Lewis acid-base interaction, dispersive force, and shape discrimination, the chromatographic partition adequately accomplishes the uneasily resolved separations by only CZE mode, although the electrophoretic migration is truly somewhat involved.


Asunto(s)
Aminoácidos/aislamiento & purificación , Cromatografía/métodos , Electroforesis Capilar/métodos , Compuestos Organometálicos/química , Ácidos Ftálicos/aislamiento & purificación , Siloxanos/química , Concentración de Iones de Hidrógeno , Polímeros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA