Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
BMC Genomics ; 24(1): 163, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37013486

RESUMEN

BACKGROUND: Epithelium-mesenchymal interactions are involved in odontogenic processes. Previous studies have focused on the intracellular signalling regulatory network in tooth development, but the functions of extracellular regulatory molecules have remained unclear. This study aims to explore the gene profile of extracellular proteoglycans and their glycosaminoglycan chains potentially involved in dental epithelium-mesenchymal interactions using high-throughput sequencing to provide new understanding of early odontogenesis. RESULTS: Whole transcriptome profiles of the mouse dental epithelium and mesenchyme were investigated by RNA sequencing (RNA-seq). A total of 1,281 and 1,582 differentially expressed genes were identified between the dental epithelium and mesenchyme at E11.5 and E13.5, respectively. Enrichment analysis showed that extracellular regions and ECM-receptor interactions were significantly enriched at both E11.5 and E13.5. Polymerase chain reaction analysis confirmed that the extracellular proteoglycan family exhibited distinct changes during epithelium-mesenchymal interactions. Most proteoglycans showed higher transcript levels in the dental mesenchyme, whereas only a few were upregulated in the epithelium at both stages. In addition, 9 proteoglycans showed dynamic expression changes between these two tissue compartments. Gpc4, Sdc2, Spock2, Dcn and Lum were expressed at higher levels in the dental epithelium at E11.5, whereas their expression was significantly higher in the dental mesenchyme at E13.5, which coincides with the odontogenic potential shift. Moreover, the glycosaminoglycan biosynthetic enzymes Ext1, Hs3st1/5, Hs6st2/3, Ndst3 and Sulf1 also exhibited early upregulation in the epithelium but showed markedly higher expression in the mesenchyme after the odontogenic potential shift. CONCLUSION: This study reveals the dynamic expression profile of extracellular proteoglycans and their biosynthetic enzymes during the dental epithelium-mesenchymal interaction. This study offers new insight into the roles of extracellular proteoglycans and their distinct sulfation underlying early odontogenesis.


Asunto(s)
Odontogénesis , Diente , Ratones , Animales , Epitelio/metabolismo , Odontogénesis/genética , Proteoglicanos/genética , Proteoglicanos/metabolismo , Transducción de Señal , Glicosaminoglicanos/metabolismo
2.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36674788

RESUMEN

Dental caries, particularly secondary caries, which is the main contributor to dental repair failure, has been the subject of extensive research due to its biofilm-mediated, sugar-driven, multifactorial, and dynamic characteristics. The clinical utility of restorations is improved by cleaning bacteria nearby and remineralizing marginal crevices. In this study, a novel multifunctional dental resin composite (DRC) composed of Sr-N-co-doped titanium dioxide (Sr-N-TiO2) nanoparticles and nano-hydroxyapatite (n-HA) reinforcing fillers with improved antibacterial and mineralization properties is proposed. The experimental results showed that the anatase-phase Sr-N-TiO2 nanoparticles were synthesized successfully. After this, the curing depth (CD) of the DRC was measured from 4.36 ± 0.18 mm to 5.10 ± 0.19 mm, which met the clinical treatment needs. The maximum antibacterial rate against Streptococcus mutans (S. mutans) was 98.96%, showing significant inhibition effects (p < 0.0001), which was experimentally verified to be derived from reactive oxygen species (ROS). Meanwhile, the resin exhibited excellent self-remineralization behavior in an SBF solution, and the molar ratio of Ca/P was close to that of HA. Moreover, the relative growth rate (RGR) of mouse fibroblast L929 indicated a high biocompatibility, with the cytotoxicity level being 0 or I. Therefore, our research provides a suitable approach for improving the antibacterial and mineralization properties of DRCs.


Asunto(s)
Caries Dental , Nanopartículas , Animales , Ratones , Durapatita/farmacología , Resinas Compuestas/farmacología , Antibacterianos/farmacología , Ensayo de Materiales
3.
J Am Chem Soc ; 144(15): 6851-6860, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35380815

RESUMEN

Recent developments in artificial molecular machines have enabled precisely controlled molecular motion, which allows several distinct mechanical operations at the nanoscale. However, harnessing and amplifying molecular motion along multiple length scales to induce macroscopic motion are still major challenges and comprise an important next step toward future actuators and soft robotics. The key to addressing this challenge relies on effective integration of synthetic molecular machines in a hierarchically aligned structure so numerous individual molecular motions can be collected in a cooperative way and amplified to higher length scales and eventually lead to macroscopic motion. Here, we report the complex motion of liquid crystal networks embedded with molecular motors triggered by single-wavelength illumination. By design, both racemic and enantiomerically pure molecular motors are programmably integrated into liquid crystal networks with a defined orientation. The motors have multiple functions acting as cross-linkers, actuators, and chiral dopants inside the network. The collective rotary motion of motors resulted in multiple types of motion of the polymeric film, including bending, wavy motion, fast unidirectional movement on surfaces, and synchronized helical motion with different handedness, paving the way for the future design of responsive materials with enhanced complex functions.


Asunto(s)
Cristales Líquidos , Movimiento (Física) , Movimiento , Polímeros/química
4.
Proc Natl Acad Sci U S A ; 114(21): 5343-5348, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28484000

RESUMEN

Abnormal H2O2 levels are closely related to many diseases, including inflammation and cancers. Herein, we simultaneously load HRP and its substrate, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), into liposomal nanoparticles, obtaining a Lipo@HRP&ABTS optical nanoprobe for in vivo H2O2-responsive chromogenic assay with great specificity and sensitivity. In the presence of H2O2, colorless ABTS would be converted by HRP into the oxidized form with strong near-infrared (NIR) absorbance, enabling photoacoustic detection of H2O2 down to submicromolar concentrations. Using Lipo@HRP&ABTS as an H2O2-responsive nanoprobe, we could accurately detect the inflammation processes induced by LPS or bacterial infection in which H2O2 is generated. Meanwhile, upon systemic administration of this nanoprobe we realize in vivo photoacoustic imaging of small s.c. tumors (∼2 mm in size) as well as orthotopic brain gliomas, by detecting H2O2 produced by tumor cells. Interestingly, local injection of Lipo@HRP&ABTS further enables differentiation of metastatic lymph nodes from those nonmetastatic ones, based on their difference in H2O2 contents. Moreover, using the H2O2-dependent strong NIR absorbance of Lipo@HRP&ABTS, tumor-specific photothermal therapy is also achieved. This work thus develops a sensitive H2O2-responsive optical nanoprobe useful not only for in vivo detection of inflammation but also for tumor-specific theranostic applications.


Asunto(s)
Peróxido de Hidrógeno , Inflamación/diagnóstico , Neoplasias Experimentales/diagnóstico , Técnicas Fotoacústicas , Nanomedicina Teranóstica/métodos , Técnicas de Ablación , Animales , Línea Celular Tumoral , Femenino , Liposomas , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias Experimentales/terapia
5.
J Mech Behav Biomed Mater ; 150: 106280, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38043260

RESUMEN

OBJECTIVE: To investigate whether urethane dimethacrylate (UDMA) -based dental restorative materials biodegrade in the presence of Streptococcus mutans (S. mutans) and whether the monomers affect the adhesion and proliferation of S. mutans in turn. METHODS: Cholesterol esterase and pseudocholinesterase-like activities in S. mutans were detected using p-nitrophenyl substrate. Two UDMA-based CAD/CAM resin-ceramic composites, Lava Ultimate (LU) and Vita Enamic (VE), and a light-cured UDMA resin block were co-cultured with S. mutans for 14 days. Their surfaces were characterized by scanning electron microscopy and laser microscopy, and the byproducts of biodegradation were examined by Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS). Then, the antimicrobial components (silver nanoparticles with quaternary ammonium salts) were added to the UDMA resin block to detect whether the biodegradation was restrained. Finally, the effect of UDMA on biofilm formation and virulence expression of S. mutans was assessed. RESULTS: Following a 14-day immersion, the LU and UDMA resin blocks' surface roughness increased. The LU and VE groups had no UDMA or its byproducts discovered, according to the UPLC-MS/MS data, whereas the light-cured UDMA block group had UDMA, urethane methacrylate (UMA), and urethane detected. The addition of antimicrobial agents showed a significant reduction in the release of UDMA. Biofilm staining experiments showed that UDMA promoted the growth of S. mutans biofilm and quantitative real-time polymerase chain reaction results indicated that 50 µg/mL UDMA significantly increase the expression of gtfB, comC, comD, comE, and gbpB genes within the biofilm. CONCLUSIONS: UDMA in the light-cured resin can be biodegraded to produce UMA and urethane under the influence of S. mutans. The formation of early biofilm can be promoted and the expression of cariogenic genes can be up-regulated by UDMA. CLINICAL SIGNIFICANCE: This study focuses for the first time on whether UDMA-based materials can undergo biodegradation and verifies from a genetic perspective that UDMA can promote the formation of S. mutans biofilms, providing a reference for the rational use of UDMA-based materials in clinical practice.


Asunto(s)
Nanopartículas del Metal , Streptococcus mutans , Cromatografía Liquida , Plata , Espectrometría de Masas en Tándem , Resinas Compuestas/química , Metacrilatos/farmacología , Poliuretanos/farmacología , Biopelículas , Cerámica , Proliferación Celular , Ensayo de Materiales , Materiales Dentales/farmacología , Propiedades de Superficie
6.
Adv Healthc Mater ; 13(13): e2302926, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38273674

RESUMEN

The successful treatment of persistent and recurrent endodontic infections hinges upon the eradication of residual microorganisms within the root canal system, which urgently needs novel drugs to deliver potent yet gentle antimicrobial effects. Antibacterial photodynamic therapy (aPDT) is a promising tool for root canal infection management. Nevertheless, the hypoxic microenvironment within the root canal system significantly limits the efficacy of this treatment. Herein, a nanohybrid drug, Ce6/CaO2/ZIF-8@polyethylenimine (PEI), is developed using a bottom-up strategy to self-supply oxygen for enhanced aPDT. PEI provides a positively charged surface, which enables precise targeting of bacteria. CaO2 reacts with H2O to generate O2, which alleviates the hypoxia in the root canal and serves as a substrate for Ce6 under 660 nm laser irradiation, leading to the successful eradication of planktonic Enterococcus faecalis (E. faecalis) and biofilm in vitro and, moreover, the effective elimination of mature E. faecalis biofilm in situ within the root canal system. This smart design offers a viable alternative for mitigating hypoxia within the root canal system to overcome the restricted efficacy of photosensitizers, providing an exciting prospect for the clinical management of persistent endodontic infection.


Asunto(s)
Biopelículas , Cavidad Pulpar , Enterococcus faecalis , Oxígeno , Fotoquimioterapia , Enterococcus faecalis/efectos de los fármacos , Fotoquimioterapia/métodos , Cavidad Pulpar/microbiología , Biopelículas/efectos de los fármacos , Oxígeno/química , Oxígeno/metabolismo , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Polietileneimina/química , Polietileneimina/farmacología , Nanopartículas/química , Animales , Compuestos de Calcio/química , Compuestos de Calcio/farmacología , Clorofilidas
7.
Adv Healthc Mater ; 13(13): e2303026, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38279961

RESUMEN

Pulmonary air leak is the most common complication of lung surgery, contributing to post-operative morbidity in up to 60% of patients; yet, there is no reliable treatment. Available surgical sealants do not match the demanding deformation mechanics of lung tissue; and therefore, fail to seal air leak. To address this therapeutic gap, a sealant with structural and mechanical similarity to subpleural lung is designed, developed, and systematically evaluated. This "lung-mimetic" sealant is a hydrofoam material that has alveolar-like porous ultrastructure, lung-like viscoelastic properties (adhesive, compressive, tensile), and lung extracellular matrix-derived signals (matrikines) to support tissue repair. In biocompatibility testing, the lung-mimetic sealant shows minimal cytotoxicity and immunogenicity in vitro. Human primary monocytes exposed to sealant matrikines in vitro upregulate key genes (MARCO, PDGFB, VEGF) known to correlate with pleural wound healing and tissue repair in vivo. In rat and swine models of pulmonary air leak, this lung-mimetic sealant rapidly seals air leak and restores baseline lung mechanics. Altogether, these data indicate that the lung-mimetic sealant can effectively seal pulmonary air leak and promote a favorable cellular response in vitro.


Asunto(s)
Pulmón , Animales , Humanos , Ratas , Pulmón/efectos de los fármacos , Pulmón/patología , Porcinos , Ratas Sprague-Dawley , Adhesivos Tisulares/química , Adhesivos Tisulares/farmacología , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología
8.
Dent Mater J ; 42(4): 559-567, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37302824

RESUMEN

This study aimed to investigate the effects of two antioxidants and their application time on the fracture strength of computer-aided design and computer-aided manufacturing (CAD/CAM)-fabricated ceramic laminate veneers to bleached enamel, as well as their effects on the bonding interface micromorphology. Eight groups were set: Group NC (without bleaching and antioxidant treatment); Group NA (bleaching without antioxidant treatment); Group SA30, SA60, SA120 and Group PAC30, PAC60, PAC120 (bleaching and treating with sodium ascorbate or proanthocyanidins for 30, 60, and 120 min, respectively). After cementation of veneers, fracture strength values and failure modes were analyzed. The bonding interface morphology was observed by confocal laser scanning microscopy. The fracture strength was impaired when cementation procedure was performed immediately after bleaching. This reduction in fracture strength was reestablished with antioxidant treatment, and an extended treatment time contributed to better improvement. The resin tags at the bonding interfaces of the bleached enamel were impaired. Antioxidant treatments were able to reverse this unfavorable trend.


Asunto(s)
Antioxidantes , Recubrimiento Dental Adhesivo , Antioxidantes/farmacología , Resistencia Flexional , Cerámica/farmacología , Esmalte Dental , Diseño Asistido por Computadora , Recubrimiento Dental Adhesivo/métodos , Coronas con Frente Estético , Ensayo de Materiales , Cementos de Resina/farmacología
9.
J Clin Med ; 12(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36614914

RESUMEN

Background: Human dental pulp stem cells (hDPSCs) play an important role in endodontic regeneration. N6-methyladenosine (m6A) is the most common RNA modification, and noncoding RNAs have also been demonstrated to have regulatory roles in the expression of m6A regulatory proteins. However, the study on m6A modification in hDPSCs has not yet been conducted. Methods: Single base site PCR (MazF) was used to detect the m6A modification site of lncSNHG7 before and after mineralization of hDPSCs to screen the target m6A modification protein, and bioinformatics analysis was used to analyze the related pathways rich in lncSNHG7. After knockdown and overexpression of lncSNHG7 and METTL3, the osteogenic/odontogenic ability was detected. After METTL3 knockdown, the m6A modification level and its expression of lncSNHG7 were detected by MazF, and their binding was confirmed. Finally, the effects of lncSNHG7 and METTL3 on the Wnt/ß-catenin pathway were detected. Results: MazF experiments revealed that lncSNHG7 had a m6A modification before and after mineralization of hDPSCs, and the occurrence site was 2081. METTL3 was most significantly upregulated after mineralization of hDPSCs. Knockdown/ overexpression of lncSNHG7 and METTL3 inhibited/promoted the osteogenic/odontogenic differentiation of hDPSCs. The m6A modification and expression of lncSNHG7 were both regulated by METTL3. Subsequently, lncSNHG7 and METTL3 were found to regulate the Wnt/ß-catenin signaling pathway. Conclusion: These results revealed that METTL3 can activate the Wnt/ß-catenin signaling pathway by regulating the m6A modification and expression of lncSNHG7 in hDPSCs to enhance the osteogenic/odontogenic differentiation of hDPSCs. Our study provides new insight into stem cell-based tissue engineering.

10.
Chem Commun (Camb) ; 56(62): 8774-8777, 2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32618300

RESUMEN

Controllable molecular release from delivery vehicles is essential to successfully reduce drug toxicity and improve therapeutic efficacy. Light-powered hydrophobic molecular motors were therefore incorporated in liposomes to use molecular rotation to facilitate on-demand release. The extent of the release was precisely controlled by irradiation times, providing a simple yet sophisticated responsive molecular nanocarrier.


Asunto(s)
Liberación de Fármacos , Luz , Liposomas/química , Rotación , Modelos Moleculares , Conformación Molecular
11.
Adv Mater ; 31(10): e1802228, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30663118

RESUMEN

External radiotherapy is extensively used in clinic to destruct tumors by locally applied ionizing-radiation beams. However, the efficacy of radiotherapy is usually limited by tumor hypoxia-associated radiation resistance. Moreover, as a local treatment technique, radiotherapy can hardly control tumor metastases, the major cause of cancer death. Herein, core-shell nanoparticles based poly(lactic-co-glycolic) acid (PLGA) are fabricate, by encapsulating water-soluble catalase (Cat), an enzyme that can decompose H2 O2 to generate O2 , inside the inner core, and loading hydrophobic imiquimod (R837), a Toll-like-receptor-7 agonist, within the PLGA shell. The formed PLGA-R837@Cat nanoparticles can greatly enhance radiotherapy efficacy by relieving the tumor hypoxia and modulating the immune-suppressive tumor microenvironment. The tumor-associated antigens generated postradiotherapy-induced immunogenic cell death in the presence of such R837-loaded adjuvant nanoparticles will induce strong antitumor immune responses, which together with cytotoxic T-lymphocyte associated protein 4 (CTLA-4) checkpoint blockade will be able to effectively inhibit tumor metastases by a strong abscopal effect. Moreover, a long term immunological memory effect to protect mice from tumor rechallenging is observed post such treatment. This work thus presents a unique nanomedicine approach as a next-generation radiotherapy strategy to enable synergistic whole-body therapeutic responses after local treatment, greatly promising for clinical translation.


Asunto(s)
Inmunoterapia/métodos , Nanopartículas/química , Neoplasias/terapia , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Radioterapia/métodos , Adyuvantes Inmunológicos/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Humanos , Imiquimod/farmacología , Ratones , Nanopartículas/uso terapéutico
12.
Biomaterials ; 162: 123-131, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29438880

RESUMEN

Starvation therapy to slow down the tumor growth by cutting off its energy supply has been proposed to be an alternative therapeutic strategy for cancer treatment. Herein, glucose oxidase (GOx) is loaded into stealth liposomes and act as the glucose and oxygen elimination agent to trigger the conversion of glucose and oxygen into gluconic acid and H2O2. Such liposome-GOx after intravenous injection with effective tumor retention is able to exhaust glucose and oxygen within the tumor, producing cytotoxic H2O2 and enhancing hypoxia, as vividly visualized by non-invasive in vivo photoacoustic imaging. By further combination treatment with stealth liposomes loaded with banoxantrone dihydrochloride (AQ4N), a hypoxia-activated pro-drug, a synergistically enhanced tumor growth inhibition effect is achieved in the mouse model of 4T1 tumor. Hence, by combining starvation therapy and hypoxia-activated therapy tactfully utilizing liposomal nanocarriers to co-deliver both enzymes and prodrugs, an innovative strategy is presented in this study for effective cancer treatment.


Asunto(s)
Glucosa/química , Liposomas/química , Oxígeno/química , Animales , Antraquinonas/química , Línea Celular , Femenino , Gluconatos/química , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Peróxido de Hidrógeno/química , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Células 3T3 NIH , Células RAW 264.7
13.
Nanoscale ; 10(15): 6981-6991, 2018 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-29610822

RESUMEN

Nanotechnology-mediated anti-inflammatory therapy is emerging as a novel strategy for the treatment of inflammation-induced injury. However, one of the main hurdles for these anti-inflammatory nano-drugs is their potential toxic side effects in vivo. Herein, we uncovered that polydopamine (PDA) nanoparticles with their structure and chemical properties similar to melanin, a natural bio-polymer, displayed a significant anti-inflammation therapeutic effect on acute inflammation-induced injury. PDA with enriched phenol groups functioned as a radical scavenger to eliminate reactive oxygen species (ROS) generated during inflammatory responses. As revealed by in vivo photoacoustic imaging with a H2O2-specific nanoprobe, PDA nanoparticles remarkably reduced intracellular ROS levels in murine macrophages challenged with either H2O2 or lipopolysaccharide (LPS). The anti-inflammatory capacity of PDA nanoparticles was further demonstrated in murine models of both acute peritonitis and acute lung injury (ALI), where diminished ROS generation, reduced proinflammatory cytokines, attenuated neutrophil infiltration, and alleviated lung tissue damage were observed in PDA-treated mice after a single dose of PDA treatment. Our work therefore presents the great promise of PDA nanoparticles as a biocompatible nano-drug for anti-inflammation therapy to treat acute inflammation-induced injury.


Asunto(s)
Depuradores de Radicales Libres/farmacología , Indoles/farmacología , Inflamación/tratamiento farmacológico , Nanopartículas , Polímeros/farmacología , Animales , Citocinas/metabolismo , Femenino , Peróxido de Hidrógeno , Lipopolisacáridos , Pulmón/efectos de los fármacos , Pulmón/fisiopatología , Ratones , Ratones Endogámicos BALB C , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo
14.
Int J Nanomedicine ; 12: 4721-4732, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28740380

RESUMEN

Herein, DNA duplex was constructed through the hybridization of adenosine triphosphate (ATP)-responsive aptamer and its cDNA in which GC-rich motif could be used to load doxorubicin (DOX), and then, cationic polymer PEI25K was used as a carrier to simultaneously condense DOX-Duplex and Bcl-2 siRNA to prepare the ternary nanocomplex polyethylenimine (PEI)/DOX-Duplex/siRNA. The ATP concentration gradient between the cytosol and extracellular environment could achieve the stable loading of DOX in duplex and the rapid drug release in an ATP-responsive manner. Using human prostate tumor cell line PC-3 as a model, an obvious induction of cell proliferation could be detected with a cell viability of 53.3%, which was stronger than single cargo delivery, indicating the synergistic effect between these two components. The enhanced anti-proliferative effect of ternary nanocomplex could be attributed to the improved induction of cell apoptosis in a mitochondria-mediated pathway and cell-cycle arrest at the G2 phase. Overall, the ATP-responsive nanocarrier for co-delivering DOX and Bcl-2 siRNA has been demonstrated to be a smart delivery system with favorable anti-proliferative effect, especially for solving the multidrug resistance of tumors.


Asunto(s)
Adenosina Trifosfato/metabolismo , Doxorrubicina/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Proteínas Proto-Oncogénicas c-bcl-2/genética , ARN Interferente Pequeño/administración & dosificación , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Liberación de Fármacos , Humanos , Masculino , Nanopartículas/administración & dosificación , Polietileneimina/química , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , ARN Interferente Pequeño/genética
15.
Int J Nanomedicine ; 12: 827-837, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28182125

RESUMEN

In this study, poly(lactic-co-glycolic acid) (PLGA) was used as a carrier to construct disulfiram-loaded porous microparticle through the emulsion solvent evaporation method, using ammonium bicarbonate as a porogen. The microparticle possessed highly porous surface, suitable aerodynamic diameter for inhalation (8.31±1.33 µm), favorable drug loading (4.09%±0.11%), and sustained release profile. The antiproliferation effect of release supernatant was detected through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay using non-small-cell lung cancer A549 as a model, with only 13.3% of cell viability observed for the release supernatant at 7 days. The antiproliferation mechanism was elucidated to be associated with the enhanced induction of cell apoptosis and cell cycle arrest at S phase through flow cytometry and Western blotting analysis. Finally, wound healing and transwell migration assay showed that they could efficiently inhibit the cell migration. These results demonstrated that disulfiram-loaded porous PLGA microparticle could achieve favorable antitumor efficiency, implying the potential of treating non-small-cell lung cancer in a pulmonary administration.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Disulfiram/farmacología , Ácido Láctico/química , Neoplasias Pulmonares/patología , Nanopartículas/química , Ácido Poliglicólico/química , Administración por Inhalación , Disuasivos de Alcohol/administración & dosificación , Disuasivos de Alcohol/química , Disuasivos de Alcohol/farmacología , Western Blotting , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Puntos de Control del Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Disulfiram/administración & dosificación , Disulfiram/química , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Nanopartículas/administración & dosificación , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Porosidad , Células Tumorales Cultivadas
16.
Viruses ; 6(7): 2778-95, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25036464

RESUMEN

Hand, foot and mouth disease (HFMD) is a common pediatric illness mainly caused by infection with enterovirus 71 (EV71) and coxsackievirus A16 (CA16). The frequent HFMD outbreaks have become a serious public health problem. Currently, no vaccine or antiviral drug for EV71/CA16 infections has been approved. In this study, a two-step screening platform consisting of reporter virus-based assays and cell viability­based assays was developed to identify potential inhibitors of EV71/CA16 infection. Two types of reporter viruses, a pseudovirus containing luciferase-encoding RNA replicons encapsidated by viral capsid proteins and a full-length reporter virus containing enhanced green fluorescent protein, were used for primary screening of 400 highly purified natural compounds. Thereafter, a cell viability-based secondary screen was performed for the identified hits to confirm their antiviral activities. Three compounds (luteolin, galangin, and quercetin) were identified, among which luteolin exhibited the most potent inhibition of viral infection. In the cell viability assay and plaque reduction assay, luteolin showed similar 50% effective concentration (EC50) values of about 10 µM. Luteolin targeted the post-attachment stage of EV71 and CA16 infection by inhibiting viral RNA replication. This study suggests that luteolin may serve as a lead compound to develop potent anti-EV71 and CA16 drugs.


Asunto(s)
Antivirales/farmacología , Proteínas de la Cápside/genética , Enterovirus Humano A/efectos de los fármacos , Enterovirus/efectos de los fármacos , Regulación Viral de la Expresión Génica , Luteolina/farmacología , Animales , Productos Biológicos/farmacología , Proteínas de la Cápside/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Chlorocebus aethiops , Enterovirus/fisiología , Enterovirus Humano A/fisiología , Flavonoides/farmacología , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Concentración 50 Inhibidora , Luciferasas/genética , Luciferasas/metabolismo , Quercetina/farmacología , Replicón , Células Vero , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA