Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Chem Rev ; 122(18): 14594-14678, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36054924

RESUMEN

Noncovalent interactions, which usually feature tunable strength, reversibility, and environmental adaptability, have been recognized as driving forces in a variety of biological and chemical processes, contributing to the recognition between molecules, the formation of molecule clusters, and the establishment of complex structures of macromolecules. The marriage of noncovalent interactions and conventional covalent polymers offers the systems novel mechanical, physicochemical, and biological properties, which are highly dependent on the binding mechanisms of the noncovalent interactions that can be illuminated via quantification. This review systematically discusses the nanomechanical characterization of typical noncovalent interactions in polymeric systems, mainly through direct force measurements at microscopic, nanoscopic, and molecular levels, which provide quantitative information (e.g., ranges, strengths, and dynamics) on the binding behaviors. The fundamental understandings of intermolecular and interfacial interactions are then correlated to the macroscopic performances of a series of noncovalently bonded polymers, whose functions (e.g., stimuli-responsiveness, self-healing capacity, universal adhesiveness) can be customized through the manipulation of the noncovalent interactions, providing insights into the rational design of advanced materials with applications in biomedical, energy, environmental, and other engineering fields.


Asunto(s)
Fenómenos Mecánicos , Polímeros , Sustancias Macromoleculares/química , Polímeros/química
2.
Biomacromolecules ; 21(6): 2409-2420, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32310635

RESUMEN

Injectable, self-healing, and pH-responsive hydrogels are great intelligent drug delivery systems for controlled and localized therapeutic release. Hydrogels that show pH-sensitive behaviors in the mildly acidic range are ideal to be used for the treatment of regions showing local acidosis like tumors, wounds and infections. In this work, we present a facile preparation of an injectable, self-healing, and supersensitive pH-responsive nanocomposite hydrogel based on Schiff base reactions between aldehyde-functionalized polymers and amine-modified silica nanoparticles. The hydrogel shows fast gelation within 10 s, injectability, and rapid self-healing capability. Moreover, the hydrogel demonstrates excellent stability under neutral physiological conditions, while a sharp gel-sol transition is observed, induced by a faintly acidic environment, which is desirable for controlled drug delivery. The pH-responsiveness of the hydrogel is ultrasensitive, where the mechanical properties, hydrolytic degradation, and drug release behaviors can alter significantly when subjected to a slight pH change of 0.2. Additionally, the hydrogel's mechanical and pH-responsive properties can be readily tuned by its composition. Its excellent biocompatibility is confirmed by cytotoxicity tests toward human dermal fibroblast cells (HDFa). The novel injectable, self-healing, and sensitive pH-responsive hydrogel serves as a promising candidate as a localized drug carrier with controlled delivery capability, triggered by acidosis, holding great promise for cancer therapy, wound healing, and infection treatment.


Asunto(s)
Sistemas de Liberación de Medicamentos , Hidrogeles , Liberación de Fármacos , Humanos , Concentración de Iones de Hidrógeno , Nanogeles
3.
Langmuir ; 34(38): 11593-11601, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30156852

RESUMEN

A bioinspired zwitterionic polyelectrolyte coating with excellent hydration ability has been regarded as a promising lubricating candidate for modifying artificial joint cartilage surface. In physiological fluids, the ubiquitous proteins play an important role in achieving outstanding boundary lubrication; however, a comprehensive understanding of the hydration lubrication between polyelectrolyte coatings and proteins still remains unclear. In this work, a facile fabrication of ultrasmooth polyelectrolyte coatings was developed via codeposition of synthesized poly(dopamine methacrylamide- co-2-methacryloyloxyethyl phosphorylcholine) (P(DMA- co-MPC)) and dopamine (DA) in a mild condition. Upon optimization of the feeding ratio of P(DMA- co-MPC) and DA, the as-fabricated PDA/P(DMA- co-MPC) coatings exhibit excellent lubricating properties when sliding with each other (friction coefficient µ = 0.036 ± 0.002, ∼2.8 MPa), as well as sliding with a model protein (bovine serum albumin (BSA)) layer (µ = 0.041 ± 0.005, ∼4.8 MPa) in phosphate-buffered saline (PBS, pH 7.4). Intriguingly, the lubrication in both systems shows Amontons-like behaviors: the friction is directly proportional to the applied load but independent of the shear velocity. Moreover, the PDA/P(DMA- co-MPC) coatings could resist the protein fouling (i.e., BSA) in PBS, which is crucial to prevent the surfaces from being contaminated when applied in biological media, thus maintaining their lubricating properties. Our results provide a versatile approach for facilely fabricating polyelectrolyte coatings with superior lubrication properties to both polyelectrolyte coatings and protein surfaces, with useful implications into the development of novel lubricating coatings for bioengineering applications (e.g., artificial joints).


Asunto(s)
Materiales Biomiméticos/química , Indoles/química , Lubricantes/química , Fosforilcolina/análogos & derivados , Polielectrolitos/química , Polímeros/química , Ácidos Polimetacrílicos/química , Animales , Incrustaciones Biológicas/prevención & control , Materiales Biomiméticos/síntesis química , Bovinos , Fricción , Indoles/síntesis química , Lubricantes/síntesis química , Lubrificación , Fosforilcolina/síntesis química , Fosforilcolina/química , Polielectrolitos/síntesis química , Polímeros/síntesis química , Ácidos Polimetacrílicos/síntesis química , Albúmina Sérica Bovina/química , Humectabilidad
4.
Sci Total Environ ; 912: 169469, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38154650

RESUMEN

Soil is the source and sink of microplastics (MPs), which is more polluted than water and air. In this paper, the pollution levels of MPs in the agriculture, roadside, urban and landfill soils were reviewed, and the influence of MPs on soil ecosystem, including soil properties, microorganisms, animals and plants, was discussed. According to the results of in vivo and in vitro experiments, the possible risks of MPs to soil ecosystem and human health were predicted. Finally, in light of the current status of MPs research, several prospects are provided for future research directions to better evaluate the ecological risk and human health risk of MPs. MPs concentrations in global agricultural soils, roadside soils, urban soils and landfill soils had a great variance in different studies and locations. The participation of MPs has an impact on all aspects of terrestrial ecosystems. For soil properties, pH value, bulk density, pore space and evapotranspiration can be changed by MPs. For microorganisms, MPs can alter the diversity and abundance of microbiome, and different MPs have different effects on bacteria and fungi differently. For plants, MPs may interfere with their biochemical and physiological conditions and produce a wide range of toxic effects, such as inhibiting plant growth, delaying or reducing seed germination, reducing biological and fruit yield, and interfering with photosynthesis. For soil animals, MPs can affect their mobility, growth rate and reproductive capacity. At present epidemiological evidences regarding MPs exposure and negative human health effects are unavailable, but in vitro and in vivo data suggest that they pose various threats to human health, including respiratory system, digestive system, urinary system, endocrine system, nervous system, and circulation system. In conclusion, the existence and danger of MPs cannot be ignored and requires a global effort.


Asunto(s)
Microbiota , Suelo , Animales , Humanos , Ecosistema , Microplásticos , Plásticos , Agricultura
5.
J Colloid Interface Sci ; 618: 111-120, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35338921

RESUMEN

Conductive hydrogels hold great promises in wearable soft electronics. However, the weak mechanical properties, low sensitivity and the absence of multifunctionalities (e.g., self-healing, self-adhesive, etc.) of the conventional conductive hydrogels limit their applications. Thus, developing multifunctional hydrogels may address some of these technical issues. In this work, a multifunctional conductive hydrogel strain sensor is fabricated by incorporating a conductive polymer Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT: PSS) into a mechanically robust poly (vinyl alcohol) (PVA)/ poly (acrylic acid) (PAA) double network (DN) hydrogel. The as-prepared hydrogel sensor could span a wide spectrum of mechanical properties by simply tuning the polymer composition and the number of freezing-thawing cycles. In addition, the dynamic hydrogen bonding interactions endow the hydrogel sensor with self-healing property and reversible adhesiveness on diverse substrates. Moreover, the hydrogel sensor shows high sensitivity (Gauge Factor from 2.21 to 3.82) and can precisely detect some subtle human motions (e.g., pulse and vocal cord vibration). This work provides useful insights into the development of conductive hydrogel-based wearable soft electronics.


Asunto(s)
Hidrogeles , Dispositivos Electrónicos Vestibles , Conductividad Eléctrica , Electrónica , Humanos , Hidrogeles/química , Alcohol Polivinílico/química
6.
Biomater Sci ; 9(10): 3543-3575, 2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-33634800

RESUMEN

Theranostic platforms that combine therapy with diagnosis not only prevent the undesirable biological responses that may occur when these processes are conducted separately, but also allow individualized therapies for patients. Polymer hydrogels have been employed to provide well-controlled drug release and targeted therapy in theranostics, where injectable hydrogels enable non-invasive treatment and monitoring with a single injection, offering greater patient comfort and efficient therapy. Efforts have been focused on applying injectable polymer hydrogels in theranostic research and clinical use. This review highlights recent progress in the design of injectable polymer hydrogels for cancer theranostics, particularly focusing on the elements/components of theranostic hydrogels, and their cross-linking strategies, structures, and performance with regard to drug delivery/tracking. Therapeutic agents and tracking modalities that are essential components of the theranostic platforms are introduced, and the design strategies, properties and applications of the injectable hydrogels developed via two approaches, namely chemical bonds and physical interactions, are described. The theranostic functions of the platforms are highly dependent on the architecture and components employed for the construction of hydrogels. Challenges currently presented by theranostic platforms based on injectable hydrogels are identified, and prospects of acquiring more comfortable and personalized therapies are proposed.


Asunto(s)
Neoplasias , Medicina de Precisión , Humanos , Hidrogeles , Inyecciones , Neoplasias/tratamiento farmacológico , Polímeros
7.
ACS Appl Mater Interfaces ; 13(40): 48239-48251, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34601867

RESUMEN

Underwater adhesion is a great challenge for the development of adhesives as the attractive interfacial intermolecular interactions are usually weakened by the surface hydration layer. The coacervation process of sessile organisms like marine mussels and sandcastle worms has inspired substantial research interest in the fabrication of long-lasting underwater adhesives, but they generally suffer from time-consuming curing triggered by surrounding environmental changes and cannot reserve the adhesiveness once damaged. Herein, an instant and repeatable underwater adhesive was developed based on the coacervation of tannic acid (TA) and poly(ethylene glycol)77-b-poly(propylene glycol)29-b-poly(ethylene glycol)77 (PEG-PPG-PEG, F68), which was driven by hydrogen-bonding interaction, and the hydrophobic cores of F68 micelles offered an additional cross-linking to enhance the mechanical properties. The TA-F68 coacervates could be facilely painted on different substrates, exhibiting robust and instant underwater adhesion (with adhesion strength up to 1.1 MPa on porcine skin) and excellent repeatability (at least 1000 cycles), superior to the previously reported coacervates. Due to the biological activities of TA, the underwater adhesive displayed innate anticancer and antibacterial properties against different types of cancer cells and bacteria, showing great potential for diverse biomedical applications, such as injectable drug carriers, tissue glues, and wound dressings.


Asunto(s)
Adhesivos/farmacología , Antibacterianos/farmacología , Antineoplásicos/farmacología , Poloxámero/farmacología , Taninos/farmacología , Adhesividad , Adhesivos/química , Animales , Antibacterianos/química , Antineoplásicos/química , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Escherichia coli/efectos de los fármacos , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Pruebas de Sensibilidad Microbiana , Poloxámero/química , Piel/metabolismo , Staphylococcus aureus/efectos de los fármacos , Porcinos , Taninos/química , Agua/química
8.
J Mater Chem B ; 8(18): 4002-4015, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32227057

RESUMEN

Developing physical hydrogels with advanced mechanical performance and multi-functionalities as alterative materials for load-bearing soft tissues remains a great challenge. Biological protein-based materials generally exhibit superior strength and toughness owing to their hierarchical structures via hydrogen-bonding assembly. Inspired by natural biological protein materials, tannic acid (TA) is exploited as a molecular coupling bridge between cellulose nanocrystals (CNCs) and poly(vinyl alcohol) (PVA) chains for the fabrication of a bio-based advanced physical hydrogel via strong multiple H-bonds. When exposed to mechanical stress, the sacrificial H-bonds can dissipate energy effectively on the molecular scale via dynamic rupture and reformation, endowing these biomimetic hydrogels with remarkable toughness, ultrahigh strength, large elongation, and good self-recoverability, which are much superior to those of most hydrogen bond-based hydrogels. Moreover, the characteristics of TA endow these biomimetic hydrogels with versatile adhesiveness and good antibacterial properties. This work presents an innovative biomimetic strategy for robust biocompatible hydrogels with superior mechanical strength and functionalities, which holds great promise for applications in tissue engineering and biomedical fields.


Asunto(s)
Materiales Biocompatibles/química , Reactivos de Enlaces Cruzados/química , Hidrogeles/química , Nanocompuestos/química , Adhesividad , Animales , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/farmacología , Células Cultivadas , Celulosa/química , Celulosa/farmacología , Reactivos de Enlaces Cruzados/síntesis química , Reactivos de Enlaces Cruzados/farmacología , Escherichia coli/efectos de los fármacos , Hidrogeles/síntesis química , Hidrogeles/farmacología , Enlace de Hidrógeno , Ratones , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Células 3T3 NIH , Tamaño de la Partícula , Alcohol Polivinílico/química , Alcohol Polivinílico/farmacología , Staphylococcus aureus/efectos de los fármacos , Estrés Mecánico , Propiedades de Superficie , Taninos/química , Taninos/farmacología , Ingeniería de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA